Unitarity (physics) in the context of Hilbert space


Unitarity (physics) in the context of Hilbert space

Unitarity (physics) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Unitarity (physics) in the context of "Hilbert space"


⭐ Core Definition: Unitarity (physics)

In quantum physics, unitarity is (or a unitary process has) the condition that the time evolution of a quantum state according to the Schrödinger equation is mathematically represented by a unitary operator. This is typically taken as an axiom or basic postulate of quantum mechanics, while generalizations of or departures from unitarity are part of speculations about theories that may go beyond quantum mechanics. A unitarity bound is any inequality that follows from the unitarity of the evolution operator, i.e. from the statement that time evolution preserves inner products in Hilbert space.

↓ Menu
HINT:

In this Dossier

Unitarity (physics) in the context of Black hole information paradox

The black hole information paradox is an unsolved problem in physics and a paradox that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from which nothing—not even light—can escape. In the 1970s, Stephen Hawking applied the semiclassical approach of quantum field theory in curved spacetime to such systems and found that an isolated black hole would emit a form of radiation (now called Hawking radiation in his honor). He also argued that the detailed form of the radiation would be independent of the initial state of the black hole, and depend only on its mass, electric charge and angular momentum.

The information paradox appears when one considers a process in which a black hole is formed through a physical process and then evaporates away entirely through Hawking radiation. Hawking's calculation suggests that the final state of radiation would retain information only about the total mass, electric charge and angular momentum of the initial state. Since many different states can have the same mass, charge and angular momentum, this suggests that many initial physical states could evolve into the same final state. Therefore, information about the details of the initial state would be permanently lost; however, this violates a core precept of both classical and quantum physics: that, in principle only, the state of a system at one point in time should determine its state at any other time. Specifically, in quantum mechanics the state of the system is encoded by its wave function. The evolution of the wave function is determined by a unitary operator, and unitarity implies that the wave function at any instant of time can be used to determine the wave function either in the past or the future. In 1993, Don Page argued that if a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. This is called the Page curve.

View the full Wikipedia page for Black hole information paradox
↑ Return to Menu

Unitarity (physics) in the context of Schrödinger picture

In physics, the Schrödinger picture or Schrödinger representation is a formulation of quantum mechanics in which the state vectors evolve in time, but the operators (observables and others) are mostly constant with respect to time (an exception is the Hamiltonian which may change if the potential changes). This differs from the Heisenberg picture which keeps the states constant while the observables evolve in time, and from the interaction picture in which both the states and the observables evolve in time. The Schrödinger and Heisenberg pictures are related as active and passive transformations and commutation relations between operators are preserved in the passage between the two pictures.

In the Schrödinger picture, the state of a system evolves with time. The evolution for a closed quantum system is brought about by a unitary operator, the time evolution operator. For time evolution from a state vector at time t0 to a state vector at time t, the time-evolution operator is commonly written , and one has

View the full Wikipedia page for Schrödinger picture
↑ Return to Menu