Unique factorization in the context of Polynomial ring


Unique factorization in the context of Polynomial ring

Unique factorization Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Unique factorization in the context of "Polynomial ring"


⭐ Core Definition: Unique factorization

In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain (a nontrivial commutative ring in which the product of any two non-zero elements is non-zero) in which every non-zero non-unit element can be written as a product of irreducible elements, uniquely up to order and units.

Important examples of UFDs are the integers and polynomial rings in one or more variables with coefficients coming from the integers or from a field.

↓ Menu
HINT:

In this Dossier

Unique factorization in the context of Algebraic number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

View the full Wikipedia page for Algebraic number theory
↑ Return to Menu