Unilamellar liposome in the context of "Vesicle (biology and chemistry)"

Play Trivia Questions online!

or

Skip to study material about Unilamellar liposome in the context of "Vesicle (biology and chemistry)"

Ad spacer

⭐ Core Definition: Unilamellar liposome

A unilamellar liposome is a spherical liposome, a vesicle, bounded by a single bilayer of an amphiphilic lipid or a mixture of such lipids, containing aqueous solution inside the chamber. Unilamellar liposomes are used to study biological systems and to mimic cell membranes, and are classified into three groups based on their size: small unilamellar liposomes/vesicles (SUVs) that with a size range of 20–100 nm, large unilamellar liposomes/vesicles (LUVs) with a size range of 100–1000 nm and giant unilamellar liposomes/vesicles (GUVs) with a size range of 1–200 μm. GUVs are mostly used as models for biological membranes in research work. Animal cells are 10–30 μm and plant cells are typically 10–100 μm. Even smaller cell organelles such as mitochondria are typically 1–2 μm. Therefore, a proper model should account for the size of the specimen being studied. In addition, the size of vesicles dictates their membrane curvature which is an important factor in studying fusion proteins. SUVs have a higher membrane curvature and vesicles with high membrane curvature can promote membrane fusion faster than vesicles with lower membrane curvature such as GUVs.

The composition and characteristics of the cell membrane varies in different cells (plant cells, mammalian cells, bacterial cells, etc). In a membrane bilayer, often the composition of the phospholipids is different between the inner and outer leaflets. Phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and sphingomyelin are some of the most common lipids most animal cell membranes. These lipids are widely different in charge, length, and saturation state. The presence of unsaturated bonds (double bonds) in lipids for example, creates a kink in acyl chains which further changes the lipid packing and results in a looser packing. Therefore, the composition and sizes of the unilamellar liposomes must be chosen carefully based on the subject of the study.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Unilamellar liposome in the context of Lipids

Lipids are a broad group of organic compounds that include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing energy, signaling, and acting as structural components of cell membranes. Lipids have applications in the cosmetic and food industries, and in nanotechnology.

Lipids are broadly defined as hydrophobic or amphiphilic small molecules; the amphiphilic nature of some lipids allows them to form structures such as vesicles, multilamellar/unilamellar liposomes, or membranes in an aqueous environment. Biological lipids originate entirely or in part from two distinct types of biochemical subunits or "building-blocks": ketoacyl and isoprene groups. Using this approach, lipids may be divided into eight categories: fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, and polyketides (derived from condensation of ketoacyl subunits); and sterol lipids and prenol lipids (derived from condensation of isoprene subunits).

↑ Return to Menu

Unilamellar liposome in the context of Vesicle (biology)

In cell biology, a vesicle is an organelle within or outside a cell, consisting of liquid or cytoplasm enclosed by a lipid bilayer. Vesicles form naturally during the processes of secretion (exocytosis), uptake (endocytosis), and the transport of materials within the plasma membrane. Alternatively, they may be prepared artificially, in which case they are called liposomes (not to be confused with lysosomes). If there is only one phospholipid bilayer, the vesicles are called unilamellar liposomes; otherwise they are called multilamellar liposomes. The membrane enclosing the vesicle is also a lamellar phase, similar to that of the plasma membrane, and intracellular vesicles can fuse with the plasma membrane to release their contents outside the cell. Vesicles can also fuse with other organelles within the cell. A vesicle released from the cell is known as an extracellular vesicle.

Vesicles perform a variety of functions. Because it is separated from the cytosol, the inside of the vesicle can be made to be different from the cytosolic environment. For this reason, vesicles are a basic tool used by the cell for organizing cellular substances. Vesicles are involved in metabolism, transport, buoyancy control, and temporary storage of food and enzymes. They can also act as chemical reaction chambers.

↑ Return to Menu

Unilamellar liposome in the context of Lamellar phase

Lamellar phase refers generally to packing of polar-headed, long chain, nonpolar-tailed molecules (amphiphiles) in an environment of bulk polar liquid, as sheets of bilayers separated by bulk liquid. In biophysics, polar lipids (mostly, phospholipids, and rarely, glycolipids) pack as a liquid crystalline bilayer, with hydrophobic fatty acyl long chains directed inwardly and polar headgroups of lipids aligned on the outside in contact with water, as a 2-dimensional flat sheet surface. Under transmission electron microscopy (TEM), after staining with polar headgroup reactive chemical osmium tetroxide, lamellar lipid phase appears as two thin parallel dark staining lines/sheets, constituted by aligned polar headgroups of lipids. 'Sandwiched' between these two parallel lines, there exists one thicker line/sheet of non-staining closely packed layer of long lipid fatty acyl chains. This TEM-appearance became famous as Robertson's unit membrane - the basis of all biological membranes, and structure of lipid bilayer in unilamellar liposomes. In multilamellar liposomes, many such lipid bilayer sheets are layered concentrically with water layers in between.

In lamellar lipid bilayers, polar headgroups of lipids align together at the interface of water and hydrophobic fatty-acid acyl chains align parallel to one another 'hiding away' from water. The lipid head groups are somewhat more 'tightly' packed than relatively 'fluid' hydrocarbon fatty acyl long chains. The lamellar lipid bilayer organization, thus reveals a 'flexibility gradient' of increasing freedom of motions from near the head-groups towards the terminal fatty-acyl chain methyl groups. Existence of such a dynamic organization of lamellar phase in liposomes as well as biological membranes can be confirmed by spin label electron paramagnetic resonance and high resolution nuclear magnetic resonance spectroscopy studies of biological membranes and liposomes.

↑ Return to Menu

Unilamellar liposome in the context of Extracellular vesicle

Extracellular vesicles (EVs) are lipid bilayer-delimited particles that are naturally released from almost all types of cells. EVs range in diameter from near the size of the smallest physically possible unilamellar liposome (around 20–30 nanometers) to as large as 10 microns or more, although the vast majority of EVs are smaller than 200 nm. EVs can be divided according to size and synthesis route into exosomes, microvesicles and apoptotic bodies. The composition of EVs varies depending on their parent cells, encompassing proteins (e.g., adhesion molecules, cytoskeletons, cytokines, ribosomal proteins, growth factors, and metabolic enzymes), lipids (including cholesterol, lipid rafts, and ceramides), nucleic acids (such as DNA, mRNA, and miRNA), metabolites, and even organelles. Most cells that have been studied to date are thought to release EVs, including some archaeal, bacterial, fungal, and plant cells that are surrounded by cell walls. A wide variety of EV subtypes have been proposed, defined variously by size, biogenesis pathway, cargo, cellular source, and function, leading to a historically heterogenous nomenclature including terms like exosomes and ectosomes.

Numerous functions of EVs have been established or postulated. The first evidence for the existence of EVs was enabled by the ultracentrifuge, the electron microscope, and functional studies of coagulation in the mid-20th century. A sharp increase in interest in EVs occurred in the first decade of the 21st century following the discovery that EVs could transfer nucleic acids such as RNA from cell to cell. Associated with EVs from certain cells or tissues, nucleic acids could be easily amplified as markers of disease and also potentially traced back to a cell of origin, such as a tumor cell. When EVs are taken up by other cells, they may alter the behaviour of the recipient cell, for instance EVs released by colorectal cancer cells increase migration of fibroblasts and thus EVs are of importance in forming tumour landscapes. This discovery also implied that EVs could be used for therapeutic purposes, such as delivering nucleic acids or other cargo to diseased tissue. Conversely, pharmacological inhibition of EV release, through Calix[6]arene, can slow down progression of experimental pancreatic cancer. The growing interest in EVs as a nexus for therapeutic intervention was paralleled by formation of companies and funding programs focused on development of EVs as biomarkers or therapies of disease, the founding of an International Society for Extracellular Vesicles (ISEV), and establishment of a scientific journal devoted to the field, the Journal of Extracellular Vesicles.

↑ Return to Menu