Uncountable in the context of Axiom of countable choice


Uncountable in the context of Axiom of countable choice

Uncountable Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Uncountable in the context of "Axiom of countable choice"


⭐ Core Definition: Uncountable

In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than aleph-null, the cardinality of the natural numbers.

Examples of uncountable sets include the set of all real numbers and set of all subsets of the natural numbers.

↓ Menu
HINT:

👉 Uncountable in the context of Axiom of countable choice

The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function with domain (where denotes the set of natural numbers) such that is a non-empty set for every , there exists a function with domain such that for every .

↓ Explore More Topics
In this Dossier

Uncountable in the context of Alphabet (formal languages)

In formal language theory, an alphabet, often called a vocabulary in the context of terminal and nonterminal symbols, is a non-empty set of indivisible symbols/characters/glyphs, typically thought of as representing letters, characters, digits, phonemes, or even words. The definition is used in a diverse range of fields including logic, mathematics, computer science, and linguistics. An alphabet may have any cardinality ("size") and, depending on its purpose, may be finite (e.g., the alphabet of letters "a" through "z"), countable (e.g., ), or even uncountable (e.g., ).

Strings, also known as "words" or "sentences", over an alphabet are defined as a sequence of the symbols from the alphabet set. For example, the alphabet of lowercase letters "a" through "z" can be used to form English words like "iceberg" while the alphabet of both upper and lower case letters can also be used to form proper names like "Wikipedia". A common alphabet is {0,1}, the binary alphabet, and "00101111" is an example of a binary string. Infinite sequences of symbols may be considered as well (see Omega language).

View the full Wikipedia page for Alphabet (formal languages)
↑ Return to Menu

Uncountable in the context of Mixture distribution

In probability and statistics, a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows: first, a random variable is selected by chance from the collection according to given probabilities of selection, and then the value of the selected random variable is realized. The underlying random variables may be random real numbers, or they may be random vectors (each having the same dimension), in which case the mixture distribution is a multivariate distribution.

In cases where each of the underlying random variables is continuous, the outcome variable will also be continuous and its probability density function is sometimes referred to as a mixture density. The cumulative distribution function (and the probability density function if it exists) can be expressed as a convex combination (i.e. a weighted sum, with non-negative weights that sum to 1) of other distribution functions and density functions. The individual distributions that are combined to form the mixture distribution are called the mixture components, and the probabilities (or weights) associated with each component are called the mixture weights. The number of components in a mixture distribution is often restricted to being finite, although in some cases the components may be countably infinite in number. More general cases (i.e. an uncountable set of component distributions), as well as the countable case, are treated under the title of compound distributions.

View the full Wikipedia page for Mixture distribution
↑ Return to Menu