Unconventional (oil and gas) reservoir in the context of Oilfield


Unconventional (oil and gas) reservoir in the context of Oilfield

Unconventional (oil and gas) reservoir Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Unconventional (oil and gas) reservoir in the context of "Oilfield"


⭐ Core Definition: Unconventional (oil and gas) reservoir

Unconventional (oil and gas) reservoirs, or unconventional resources (resource plays) are accumulations where oil and gas phases are tightly bound to the rock fabric by strong capillary forces, requiring specialized measures for evaluation and extraction.

↓ Menu
HINT:

In this Dossier

Unconventional (oil and gas) reservoir in the context of Gas field

A petroleum reservoir or oil and gas reservoir is a subsurface accumulation of hydrocarbons contained in porous or fractured rock formations. Such reservoirs form when kerogen (ancient plant matter) is created in surrounding rock by the presence of high heat and pressure in the Earth's crust.

Reservoirs are broadly classified as conventional and unconventional reservoirs. In conventional reservoirs, the naturally occurring hydrocarbons, such as crude oil (petroleum) or natural gas, are trapped by overlying rock formations with lower permeability, while in unconventional reservoirs the rocks have high porosity and low permeability, which keeps the hydrocarbons trapped in place, therefore not requiring a cap rock. Reservoirs are found using hydrocarbon exploration methods.

View the full Wikipedia page for Gas field
↑ Return to Menu

Unconventional (oil and gas) reservoir in the context of Hydraulic fracturing proppants

A proppant is a solid material, typically sand, treated sand or man-made ceramic materials, designed to keep an induced hydraulic fracture open, during or following a fracturing treatment, most commonly for unconventional reservoirs. It is added to a fracking fluid which may vary in composition depending on the type of fracturing used, and can be gel, foam or slickwater-based. In addition, there may be unconventional fracking fluids. Fluids make tradeoffs in such material properties as viscosity, where more viscous fluids can carry more concentrated proppant; the energy or pressure demands to maintain a certain flux pump rate (flow velocity) that will conduct the proppant appropriately; pH, various rheological factors, among others. In addition, fluids may be used in low-volume well stimulation of high-permeability sandstone wells (20 to 80 thousand US gallons (76 to 303 kl) per well) to the high-volume operations such as shale gas and tight gas that use millions of gallons of water per well.

Conventional wisdom has often vacillated about the relative superiority of gel, foam and slickwater fluids with respect to each other, which is in turn related to proppant choice. For example, Zuber, Kuskraa and Sawyer (1988) found that gel-based fluids seemed to achieve the best results for coalbed methane operations, but as of 2012, slickwater treatments are more popular.

View the full Wikipedia page for Hydraulic fracturing proppants
↑ Return to Menu