Unconformity in the context of "Relative dating"

Play Trivia Questions online!

or

Skip to study material about Unconformity in the context of "Relative dating"

Ad spacer

⭐ Core Definition: Unconformity

An unconformity is a buried erosional or non-depositional surface separating two rock masses or strata of different ages, indicating that sediment deposition was not continuous. In general, the older layer was exposed to erosion for an interval of time before deposition of the younger layer, but the term is used to describe any break in the sedimentary geologic record. The significance of angular unconformity (see below) was shown by James Hutton, who found examples of Hutton's Unconformity at Jedburgh in 1787 and at Siccar Point in Berwickshire in 1788, both in Scotland.

The rocks above an unconformity are younger than the rocks beneath (unless the sequence has been overturned). An unconformity represents time during which no sediments were preserved in a region or were subsequently eroded before the next deposition. The local record for that time interval is missing and geologists must use other clues to discover that part of the geologic history of that area. The interval of geologic time not represented is called a hiatus. It is a kind of relative dating.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Unconformity in the context of Moenave Formation

The Moenave Formation is a Mesozoic geologic formation, in the Glen Canyon Group. It is found in Utah and Arizona.

The Moenave was deposited on an erosion surface on the Chinle Formation following an early Jurassic uplift and unconformity that represents about ten million years of missing sedimentation. Periodic incursions of shallow seas from the north during the Jurassic flooded parts of Wyoming, Montana, and a northeast–southwest trending trough on the Utah/Idaho border. The Moenave was deposited in a variety of river, lake, and flood-plain environments, near the ancient Lake Dixie.

↑ Return to Menu

Unconformity in the context of Erosion surface

In geology and geomorphology, an erosion surface is a surface of rock or regolith that was formed by erosion and not by construction (e.g. lava flows, sediment deposition) nor fault displacement. Erosional surfaces within the stratigraphic record are known as unconformities, but not all unconformities are buried erosion surfaces. Erosion surfaces vary in scale and can be formed on a mountain range or a rock. Particularly large and flat erosion surfaces receive the names of peneplain, paleoplain, planation surface or pediplain. An example of erosion surface is road surface erosion which is caused by natural and anthropogenic factors. Erosion surface can be measured through direct, contact measurement methods and indirect, non-contact measurement methods.

↑ Return to Menu

Unconformity in the context of Chinle Formation

The Chinle Formation is an Upper Triassic continental geological formation of fluvial, lacustrine, and palustrine to eolian deposits spread across the U.S. states of Nevada, Utah, northern Arizona, western New Mexico, and western Colorado. In New Mexico, it is often raised to the status of a geological group, the Chinle Group. Some authors have controversially considered the Chinle to be synonymous to the Dockum Group of eastern Colorado and New Mexico, western Texas, the Oklahoma panhandle, and southwestern Kansas. The Chinle Formation is part of the Colorado Plateau, Basin and Range, and the southern section of the Interior Plains. A probable separate depositional basin within the Chinle is found in northwestern Colorado and northeastern Utah. The southern portion of the Chinle reaches a maximum thickness of a little over 520 meters (1,710 ft). Typically, the Chinle rests unconformably on the Moenkopi Formation.

The Chinle Formation was probably mostly deposited in the Norian stage, according to a plethora of chronological techniques. It is a thick and fossiliferous formation with numerous named members (subunits) throughout its area of deposition.

↑ Return to Menu

Unconformity in the context of Campanian

The Campanian is the fifth of six ages of the Late Cretaceous epoch on the geologic timescale of the International Commission on Stratigraphy (ICS). In chronostratigraphy, it is the fifth of six stages in the Upper Cretaceous Series. Campanian spans the time from 83.6 (± 0.2) to 72.2 (± 0.2) million years ago. It is preceded by the Santonian and it is followed by the Maastrichtian.

The Campanian was an age when a worldwide sea level rise covered many coastal areas. The morphology of some of these areas has been preserved: it is an unconformity beneath a cover of marine sedimentary rocks.

↑ Return to Menu

Unconformity in the context of Hutton's Unconformity

Hutton's Unconformity is a name given to various notable geological sites in Scotland identified by the 18th-century Scottish geologist James Hutton as places where the junction between two types of rock formations can be seen. This geological phenomenon marks the location where rock formations created at different times and by different processes adjoin. For Hutton, such an unconformity provided evidence for his Plutonist theories of uniformitarianism and the age of Earth.

An unconformity is a break in the normal progression of sedimentary deposits, where newer deposits are laid on top of older. The example Hutton discovered is known as an angular unconformity in which a sharp change in younging direction can be seen in the orientation of bedding planes. The younging direction points from the oldest bed, to the youngest bed in the sequence of sedimentary beds.

↑ Return to Menu

Unconformity in the context of Silicification

In geology, silicification is a process in which silica-rich fluids seep into the voids of Earth materials, e.g., rocks, wood, bones, shells, and replace the original materials with silica (SiO2). Silica is a naturally existing and abundant compound found in organic and inorganic materials, including Earth's crust and mantle. There are a variety of silicification mechanisms. In silicification of wood, silica permeates into and occupies cracks and voids in wood such as vessels and cell walls. The original organic matter is retained throughout the process and will gradually decay through time. In the silicification of carbonates, silica replaces carbonates by the same volume. Replacement is accomplished through the dissolution of original rock minerals and the precipitation of silica. This leads to a removal of original materials out of the system. Depending on the structures and composition of the original rock, silica might replace only specific mineral components of the rock. Silicic acid (H4SiO4) in the silica-enriched fluids forms lenticular, nodular, fibrous, or aggregated quartz, opal, or chalcedony that grows within the rock. Silicification happens when rocks or organic materials are in contact with silica-rich surface water, buried under sediments and susceptible to groundwater flow, or buried under volcanic ashes. Silicification is often associated with hydrothermal processes. Temperature for silicification ranges in various conditions: in burial or surface water conditions, temperature for silicification can be around 25°−50°; whereas temperatures for siliceous fluid inclusions can be up to 150°−190°. Silicification could occur during a syn-depositional or a post-depositional stage, commonly along layers marking changes in sedimentation such as unconformities or bedding planes.

↑ Return to Menu

Unconformity in the context of Sequence stratigraphy

Sequence stratigraphy is a form of stratigraphy that attempts to discern and understand historic geology through time by subdividing and linking sedimentary deposits into unconformity bounded units on a variety of scales. The essence of the method is mapping of strata based on identification of surfaces which are assumed to represent time lines (e.g. subaerial unconformities, maximum flooding surfaces), thereby placing stratigraphy in chronostratigraphic framework allowing understanding of the evolution of the Earth's surface in a particular region through time. Sequence stratigraphy is a useful alternative to a purely lithostratigraphic approach, which emphasizes solely based on the compositional similarity of the lithology of rock units rather than time significance. Unconformities are particularly important in understanding geologic history because they represent erosional surfaces where there is a clear gap in the record. Conversely within a sequence the geologic record should be relatively continuous and complete record that is genetically related.

Stratigraphers explain sequence boundaries and stratigraphic units primarily in terms of changes in relative sea level (the combination of global changes in eustatic sea level and regional subsidence caused by tectonic subsidence, thermal subsidence and load-induced subsidence as the weight of accumulated sediment and water cause isostatic subsidence as a sedimentary basin is filled). The net changes resulting from these vertical forces increases or reduces accommodation space for sediments to accumulate in a sedimentary basin. A secondary influence is the rate of sediment supply to the basin which determines the rate at which that space is filled.

↑ Return to Menu

Unconformity in the context of Dockum Group

The Dockum is a Late Triassic (approximately late Carnian through Rhaetian, or 223–200 Ma) geologic group found primarily on the Llano Estacado of western Texas and eastern New Mexico with minor exposures in southwestern Kansas, eastern Colorado, and Oklahoma panhandle. The Dockum reaches a maximum thickness of slightly over 650 m but is usually much thinner. The Dockum rests on an unconformity over the Anisian (242–234 Ma) aged Anton Chico Formation.

The Dockum and Chinle Formation were deposited roughly at the same time and share many of the same vertebrates and plant fossils. They appear to have very similar paleoenvironments. The two units are approximately separated by the Rio Grande in central New Mexico. This has led to controversy over the stratigraphic nomenclature for the Chinle and Dockum.

↑ Return to Menu

Unconformity in the context of Oak Ridges Moraine

The Oak Ridges Moraine is an ecologically important geological landform in the Mixedwood Plains of south-central Ontario, Canada. The moraine covers a geographic area of 1,900 square kilometres (730 sq mi) between Caledon and Rice Lake, near Peterborough. One of the most significant landforms in southern Ontario, the moraine gets its name from the rolling hills and river valleys extending 160 km (99 mi) east from the Niagara Escarpment to Rice Lake, formed 12,000 years ago by advancing and retreating glaciers (see geological origins, below) during the last glaciation period. Below the approximately 200 metre thick glacial derived sediments of the moraine lies thick bedrock successions of Precambrian rocks and up to 200 metres of Ordovician aged rock (see geology below), capped by a regional unconformity of erosion and non-deposition to the Quaternary period. Rivers and lakes scatter the landscape and are important for creating habitat for the rich diversity of species of animals, trees and shrubbery (see ecology). These are also the supply of fresh water to aquifers in the moraine through complex subterranean connections (see hydrology). Construction development nearby, and with expansion of communities around the moraine in need of potable water, it is a contested site in Ontario, since it stands in the path of major urban development (see political action). Conservation of the moraine is thus an important step for keeping aquifers in a safe drinkable condition while also protecting the natural ecosystems surrounding and within the moraine (see conservation). This region has been subject to multiple decades of scientific research to study the origins of formation, and how early communities used the land. A larger focus currently is how to source potable water without removing the aquifer entirely (see research section).

↑ Return to Menu