Ultraviolet astronomy in the context of "Gamma-ray astronomy"

Play Trivia Questions online!

or

Skip to study material about Ultraviolet astronomy in the context of "Gamma-ray astronomy"

Ad spacer

⭐ Core Definition: Ultraviolet astronomy

Ultraviolet astronomy is the observation of electromagnetic radiation at ultraviolet wavelengths between approximately 10 and 320 nanometres; shorter wavelengths—higher energy photons—are studied by X-ray astronomy and gamma-ray astronomy. Ultraviolet light is not visible to the human eye. Most of the light at these wavelengths is absorbed by the Earth's atmosphere, so observations at these wavelengths must be performed from the upper atmosphere or from space.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Ultraviolet astronomy in the context of History of astronomy

The history of astronomy focuses on the efforts of civilizations to understand the universe beyond earth's atmosphere.Astronomy is one of the oldest natural sciences, achieving a high level of success in the second half of the first millennium. Astronomy has origins in the religious, mythological, cosmological, calendrical, and astrological beliefs and practices of prehistory. Early astronomical records date back to the Babylonians around 1000 BC. There is also astronomical evidence of interest from early Chinese, Central American and North European cultures.

Astronomy was used by early cultures for timekeeping, navigation, spiritual and religious practices, and agricultural planning. Ancient astronomers observed and charted the skies in an effort to learn about the workings of the universe. During the Renaissance Period, revolutionary ideas emerged about astronomy. One such idea was contributed in 1543 by Polish astronomer Nicolaus Copernicus, who developed a heliocentric model that depicted the planets orbiting the sun. This was the start of the Copernican Revolution, with the invention of the telescope in 1608 playing a key part. Later developments included the reflecting telescope, astronomical photography, astronomical spectroscopy, radio telescopes, cosmic ray astronomy, infrared telescopes, space telescopes,ultraviolet astronomy, X-ray astronomy, gamma-ray astronomy, space probes, neutrino astronomy, and gravitational-wave astronomy.

↑ Return to Menu

Ultraviolet astronomy in the context of Astronomical spectroscopy

Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the spectrum of electromagnetic radiation, including visible light, ultraviolet, X-ray, infrared and radio waves that radiate from stars and other celestial objects. A stellar spectrum can reveal many properties of stars, such as their chemical composition, temperature, density, mass, distance and luminosity. Spectroscopy can show the velocity of motion towards or away from the observer by measuring the Doppler shift. Spectroscopy is also used to study the physical properties of many other types of celestial objects such as planets, nebulae, galaxies, and active galactic nuclei.

↑ Return to Menu

Ultraviolet astronomy in the context of High-energy astronomy

High-energy astronomy is the study of astronomical objects that release electromagnetic radiation of highly energetic wavelengths. It includes X-ray astronomy, gamma-ray astronomy, extreme UV astronomy, neutrino astronomy, and studies of cosmic rays. The physical study of these phenomena is referred to as high-energy astrophysics.

Astronomical objects commonly studied in this field may include black holes, neutron stars, active galactic nuclei, supernovae, kilonovae, supernova remnants, and gamma-ray bursts.

↑ Return to Menu

Ultraviolet astronomy in the context of Optical astronomy

Visible-light astronomy encompasses a wide variety of astronomical observation via telescopes that are sensitive in the range of visible light (optical telescopes). Visible-light astronomy or optical astronomy differs from astronomies based on invisible types of light in the electromagnetic radiation spectrum, such as radio waves, infrared waves, ultraviolet waves, X-ray waves and gamma-ray waves. Visible light ranges from 380 to 750 nanometers in wavelength.

Visible-light astronomy has existed as long as people have been looking up at the night sky, although it has since improved in its observational capabilities since the invention of the telescope. This is commonly credited to Hans Lippershey, a German-Dutch spectacle-maker, although Galileo Galilei played a large role in the development and creation of telescopes.

↑ Return to Menu