Ultracold atom in the context of Superfluidity


Ultracold atom in the context of Superfluidity

Ultracold atom Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Ultracold atom in the context of "Superfluidity"


⭐ Core Definition: Ultracold atom

In condensed matter physics, an ultracold atom is an atom with a temperature near absolute zero. At such temperatures, an atom's quantum-mechanical properties become important, especially through what's known as a "superfluid", such as Superfluid Helium 4.

To reach such low temperatures, a combination of several techniques typically has to be used. First, atoms are trapped and pre-cooled via laser cooling in a magneto-optical trap. To reach the lowest possible temperature, further cooling is performed using evaporative cooling in a magnetic or optical trap. Several Nobel prizes in physics are related to the development of the techniques to manipulate quantum properties of individual atoms (e.g. 1989, 1996, 1997, 2001, 2005, 2012, 2018).

↓ Menu
HINT:

In this Dossier

Ultracold atom in the context of Condensed matter physics

Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases, that arise from electromagnetic forces between atoms and electrons. More generally, the subject deals with condensed phases of matter: systems of many constituents with strong interactions among them. More exotic condensed phases include the superconducting phase exhibited by certain materials at extremely low cryogenic temperatures, the ferromagnetic and antiferromagnetic phases of spins on crystal lattices of atoms, the Bose–Einstein condensates found in ultracold atomic systems, and liquid crystals. Condensed matter physicists seek to understand the behavior of these phases by experiments to measure various material properties, and by applying the physical laws of quantum mechanics, electromagnetism, statistical mechanics, and other physics theories to develop mathematical models and predict the properties of extremely large groups of atoms.

The diversity of systems and phenomena available for study makes condensed matter physics the most active field of contemporary physics: one third of all American physicists self-identify as condensed matter physicists, and the Division of Condensed Matter Physics is the largest division of the American Physical Society. These include solid state and soft matter physicists, who study quantum and non-quantum physical properties of matter respectively. Both types study a great range of materials, providing many research, funding and employment opportunities. The field overlaps with chemistry, materials science, engineering and nanotechnology, and relates closely to atomic physics and biophysics. The theoretical physics of condensed matter shares important concepts and methods with that of particle physics and nuclear physics.

View the full Wikipedia page for Condensed matter physics
↑ Return to Menu

Ultracold atom in the context of Quantum materials

Quantum materials is an umbrella term in condensed matter physics that encompasses all materials whose essential properties cannot be described in terms of semiclassical particles and low-level quantum mechanics. These are materials that present strong electronic correlations or some type of electronic order, such as superconducting or magnetic orders, or materials whose electronic properties are linked to non-generic quantum effects – topological insulators, Dirac electron systems such as graphene, as well as systems whose collective properties are governed by genuinely quantum behavior, such as ultra-cold atoms, cold excitons, polaritons, and so forth. On the microscopic level, four fundamental degrees of freedom – that of charge, spin, orbit and lattice – become intertwined, resulting in complex electronic states; the concept of emergence is a common thread in the study of quantum materials.

Quantum materials exhibit puzzling properties with no counterpart in the macroscopic world: quantum entanglement, quantum fluctuations, robust boundary states dependent on the topology of the materials' bulk wave functions, etc. Quantum anomalies such as the chiral magnetic effect link some quantum materials with processes in high-energy physics of quark-gluon plasmas.

View the full Wikipedia page for Quantum materials
↑ Return to Menu

Ultracold atom in the context of Magneto-optical trap

In atomic, molecular, and optical physics, a magneto-optical trap (MOT) is an apparatus which uses laser cooling and a spatially varying magnetic field to create a trap which can produce samples of cold neutral atoms. Temperatures achieved in a MOT can be as low as several microkelvins, depending on the atomic species, which is two or three times below the photon-recoil limit. However, for atoms with an unresolved hyperfine structure, such as Li, the temperature achieved in a MOT will be higher than the Doppler cooling limit.

A MOT is formed from the intersection of the zero of a weak quadrupolar magnetic field and six circularly polarized red-detuned optical molasses beams. Counterpropagating beams have opposite handed polarization. As atoms travel away from the zero field at the center of the trap, the spatially varying Zeeman shift brings an atomic transition into resonance with the laser beams. The polarization of the beam propagating in the opposite direction of this atomic motion is chosen to drive this transition. The absorption of these photons gives rise to a scattering force that pushes the atoms back towards the center of the trap.

View the full Wikipedia page for Magneto-optical trap
↑ Return to Menu