Ultimate fate of the universe in the context of "Age of the universe"

Play Trivia Questions online!

or

Skip to study material about Ultimate fate of the universe in the context of "Age of the universe"

Ad spacer

⭐ Core Definition: Ultimate fate of the universe

The ultimate fate of the universe is a topic in physical cosmology, whose theoretical restrictions allow possible scenarios for the evolution and ultimate fate of the universe to be described and evaluated. Based on available observational evidence, deciding the fate and evolution of the universe has become a valid cosmological question, being beyond the mostly untestable constraints of mythological or theological beliefs. Several possible futures have been predicted by different scientific hypotheses, including that the universe might have existed for a finite or infinite duration, or towards explaining the manner and circumstances of its beginning.

Observations made by Edwin Hubble during the 1930s–1950s found that galaxies appeared to be moving away from each other, leading to the currently accepted Big Bang theory. This suggests that the universe began very dense about 13.787 billion years ago, and it has expanded and (on average) become less dense ever since. Confirmation of the Big Bang mostly depends on knowing the rate of expansion, average density of matter, and the physical properties of the mass–energy in the universe.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Ultimate fate of the universe in the context of Cosmology

Cosmology (from Ancient Greek κόσμος (cosmos) 'the universe, the world' and λογία (logia) 'study of') is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term cosmology was first used in English in 1656 in Thomas Blount's Glossographia, with the meaning of "a speaking of the world". In 1731, German philosopher Christian Wolff used the term cosmology in Latin (cosmologia) to denote a branch of metaphysics that deals with the general nature of the physical world. Religious or mythological cosmology is a body of beliefs based on mythological, religious, and esoteric literature and traditions of creation myths and eschatology. In the science of astronomy, cosmology is concerned with the study of the chronology of the universe.

Physical cosmology is the study of the observable universe's origin, its large-scale structures and dynamics, and the ultimate fate of the universe, including the laws of science that govern these areas. It is investigated by scientists, including astronomers and physicists, as well as philosophers, such as metaphysicians, philosophers of physics, and philosophers of space and time. Because of this shared scope with philosophy, theories in physical cosmology may include both scientific and non-scientific propositions and may depend upon assumptions that cannot be tested. Physical cosmology is a sub-branch of astronomy that is concerned with the universe as a whole. Modern physical cosmology is dominated by the Big Bang Theory which attempts to bring together observational astronomy and particle physics; more specifically, a standard parameterization of the Big Bang with dark matter and dark energy, known as the Lambda-CDM model.

↑ Return to Menu

Ultimate fate of the universe in the context of Heat death of the universe

The heat death of the universe (also known as the Big Chill or Big Freeze) is a scientific hypothesis regarding the ultimate fate of the universe which posits the universe will evolve to a state of no thermodynamic free energy and, having reached maximum entropy, will therefore be unable to sustain any further thermodynamic processes. Heat death does not imply any particular absolute temperature; it only requires that temperature differences or other processes may no longer be exploited to perform work. In the language of physics, this is when the universe reaches thermodynamic equilibrium.

If the curvature of the universe is hyperbolic or flat, or if dark energy is a positive cosmological constant, the universe will continue expanding forever, and a heat death is expected to occur, with the universe cooling to approach equilibrium at a very low temperature after a long time period.

↑ Return to Menu

Ultimate fate of the universe in the context of Big Rip

In physical cosmology, the Big Rip is a hypothetical cosmological model concerning the ultimate fate of the universe, in which the matter of the universe, from stars and galaxies to atoms and subatomic particles, is progressively torn apart by the gravitational influence of dark energy at a certain time in the future, such that distances between particles infinitely increase.

According to the standard model of cosmology, the scale factor of the universe is accelerating, and, in the future era of cosmological constant dominance, will increase exponentially. But this expansion is similar for every moment of time (hence the exponential law—the expansion of a local volume is the same number of times over the same time interval), and is characterized by an unchanging, small Hubble constant, effectively ignored by any bound material structures. By contrast, in the Big Rip scenario the Hubble constant increases to infinity in a finite time. According to recent studies, the universe is set for a constant expansion and heat death, because the equation of state parameter w = −1.

↑ Return to Menu

Ultimate fate of the universe in the context of Big Crunch

The Big Crunch is a hypothetical scenario for the ultimate fate of the universe, in which the expansion of the universe eventually reverses and the universe recollapses, ultimately causing the cosmic scale factor to reach absolute zero, an event potentially followed by a reformation of the universe starting with another Big Bang. The vast majority of current evidence, however, indicates that this hypothesis is not correct. Instead, astronomical observations show that the expansion of the universe is accelerating rather than being slowed by gravity, suggesting that a Big Chill or Big Rip is much more likely to occur. Nonetheless, some physicists have proposed that a "Big Crunch-style" event could result from a dark energy fluctuation.

The hypothesis dates back to 1922, with Russian physicist Alexander Friedmann creating a set of equations showing that the end of the universe depends on its density. It could either expand or contract rather than stay stable. With enough matter, gravity could stop the universe's expansion and eventually reverse it. This reversal would result in the universe collapsing on itself, not too dissimilar to a black hole.

↑ Return to Menu