Type Ia supernova in the context of "Binary system"

Play Trivia Questions online!

or

Skip to study material about Type Ia supernova in the context of "Binary system"

Ad spacer

⭐ Core Definition: Type Ia supernova

A Type Ia supernova (read: "type one-A") is a supernova that occurs in binary systems (two stars orbiting one another) in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white dwarf.

Physically, carbon–oxygen white dwarfs with a low rate of rotation are limited to below 1.44 solar masses (M). Beyond this "critical mass", they reignite and in some cases trigger a supernova explosion; this critical mass is often referred to as the Chandrasekhar mass, but is marginally different from the absolute Chandrasekhar limit, where electron degeneracy pressure is unable to prevent catastrophic collapse. If a white dwarf gradually accretes mass from a binary companion, or merges with a second white dwarf, the general hypothesis is that a white dwarf's core will reach the ignition temperature for carbon fusion as it approaches the Chandrasekhar mass. Within a few seconds of initiation of nuclear fusion, a substantial fraction of the matter in the white dwarf undergoes a runaway reaction, releasing enough energy (1×10 J) to unbind the star in a supernova explosion.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Type Ia supernova in the context of Big Bang

The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including the abundance of light elements, the cosmic microwave background (CMB) radiation, and large-scale structure. The uniformity of the universe, known as the horizon and flatness problems, is explained through cosmic inflation: a phase of accelerated expansion during the earliest stages. Detailed measurements of the expansion rate of the universe place the initial singularity at an estimated 13.787±0.02 billion years ago, which is considered the age of the universe. A wide range of empirical evidence strongly favors the Big Bang event, which is now widely accepted.

Extrapolating this cosmic expansion backward in time using the known laws of physics, the models describe an extraordinarily hot and dense primordial universe. Physics lacks a widely accepted theory that can model the earliest conditions of the Big Bang. As the universe expanded, it cooled sufficiently to allow the formation of subatomic particles, and later atoms. These primordial elements—mostly hydrogen, with some helium and lithium—then coalesced under the force of gravity aided by dark matter, forming early stars and galaxies. Measurements of the redshifts of supernovae indicate that the expansion of the universe is accelerating, an observation attributed to a concept called dark energy.

↑ Return to Menu

Type Ia supernova in the context of Dark energy

In physical cosmology and astronomy, dark energy is a proposed form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. It also slows the rate of structure formation. Assuming that the lambda-CDM model of cosmology is correct, dark energy dominates the universe, contributing 68% of the total energy in the present-day observable universe while dark matter and ordinary (baryonic) matter contribute 27% and 5%, respectively, and other components such as neutrinos and photons are nearly negligible. Dark energy's density is very low: 7×10 g/cm (6×10 J/m in mass-energy), much less than the density of ordinary matter or dark matter within galaxies. However, it dominates the universe's mass–energy content because it is uniform across space.

The first observational evidence for dark energy's existence came from measurements of supernovae. Type Ia supernovae have constant luminosity, which means that they can be used as accurate distance measures. Comparing this distance to the redshift (which measures the speed at which the supernova is receding) shows that the universe's expansion is accelerating. Prior to this observation, scientists thought that the gravitational attraction of matter and energy in the universe would cause the universe's expansion to slow over time. Since the discovery of accelerating expansion, several independent lines of evidence have been discovered that support the existence of dark energy.

↑ Return to Menu

Type Ia supernova in the context of Supernova

A supernova (pl.: supernovae) is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the progenitor, either collapses to a neutron star or black hole, or is completely destroyed to form a diffuse nebula. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months.

The last supernova directly observed in the Milky Way was Kepler's Supernova in 1604, appearing not long after Tycho's Supernova in 1572, both of which were visible to the naked eye. Observations of recent supernova remnants within the Milky Way, coupled with studies of supernovae in other galaxies, suggest that these powerful stellar explosions occur in our galaxy approximately three times per century on average. A supernova in the Milky Way would almost certainly be observable through modern astronomical telescopes. The most recent naked-eye supernova was SN 1987A, which was the explosion of a blue supergiant star in the Large Magellanic Cloud, a satellite galaxy of the Milky Way in 1987.

↑ Return to Menu

Type Ia supernova in the context of SN 1994D

SN 1994D was a Type Ia supernova event on the outskirts of galaxy NGC 4526, which was observed in 1994.

↑ Return to Menu

Type Ia supernova in the context of Kepler's Supernova

SN 1604, also known as Kepler's Supernova, Kepler's Nova or Kepler's Star, was a Type Ia supernova that occurred in the Milky Way, in the constellation Ophiuchus. Appearing in 1604, it is the most recent supernova in the Milky Way galaxy to have been unquestionably observed by the naked eye, occurring no farther than 6 kiloparsecs (20,000 light-years) from Earth. Before the adoption of the current naming system for supernovae, it was named for Johannes Kepler, the German astronomer who described it in De Stella Nova.

↑ Return to Menu

Type Ia supernova in the context of Tycho's Supernova

SN 1572 (Tycho's Star, Tycho's Nova, Tycho's Supernova), or B Cassiopeiae (B Cas), was a supernova of Type Ia in the constellation Cassiopeia, one of eight supernovae visible to the naked eye in historical records. It appeared in early November 1572 and was independently discovered by many individuals.

Its supernova remnant has been observed optically but was first detected at radio wavelengths. It is often known as 3C 10, a radio-source designation, although increasingly as Tycho's supernova remnant.

↑ Return to Menu

Type Ia supernova in the context of Eclipsing binary

A binary star or binary star system is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved as separate stars using a telescope, in which case they are called visual binaries. Many visual binaries have long orbital periods of several centuries or millennia and therefore have orbits which are uncertain or poorly known. They may also be detected by indirect techniques, such as spectroscopy (spectroscopic binaries) or astrometry (astrometric binaries). If a binary star happens to orbit in a plane along our line of sight, its components will eclipse and transit each other; these pairs are called eclipsing binaries, or, together with other binaries that change brightness as they orbit, photometric binaries.

If components in binary star systems are close enough, they can gravitationally distort each other's outer stellar atmospheres. In some cases, these close binary systems can exchange mass, which may bring their evolution to stages that single stars cannot attain. Examples of binaries are Sirius and Cygnus X-1 (Cygnus X-1 being a well-known black hole). Binary stars are also common as the nuclei of many planetary nebulae, and are the progenitors of both novae and type Ia supernovae.

↑ Return to Menu

Type Ia supernova in the context of Supernova Cosmology Project

The Supernova Cosmology Project is one of two research teams that determined the likelihood of an accelerating universe and therefore a positive cosmological constant, using data from the redshift of Type Ia supernovae. The project is headed by Saul Perlmutter at Lawrence Berkeley National Laboratory, with members from Australia, Chile, France, Portugal, Spain, Sweden, the United Kingdom, and the United States.

This discovery was named "Breakthrough of the Year for 1998" by Science Magazine and, along with the High-Z Supernova Search Team, the project team won the 2007 Gruber Prize in Cosmology and the 2015 Breakthrough Prize in Fundamental Physics. In 2011, Perlmutter was awarded the Nobel Prize in Physics for this work, alongside Adam Riess and Brian P. Schmidt from the High-Z team.

↑ Return to Menu