Tyndall Effect in the context of "Motorcycles"

Play Trivia Questions online!

or

Skip to study material about Tyndall Effect in the context of "Motorcycles"

Ad spacer

⭐ Core Definition: Tyndall Effect

The Tyndall effect is light scattering by particles in a colloid such as a very fine suspension (a sol). Also known as Tyndall scattering, it is similar to Rayleigh scattering, in that the intensity of the scattered light is inversely proportional to the fourth power of the wavelength, so blue light is scattered much more strongly than red light. An example in everyday life is the blue colour sometimes seen in the smoke emitted by motorcycles, in particular two-stroke machines where the burnt engine oil provides these particles. The same effect can also be observed with tobacco smoke whose fine particles also preferentially scatter blue light.

Under the Tyndall effect, the longer wavelengths are transmitted more, while the shorter wavelengths are more diffusely reflected via scattering. The Tyndall effect is seen when light-scattering particulate matter is dispersed in an otherwise light-transmitting medium, where the diameter of an individual particle is in the range of roughly 40 to 900 nm, i.e. somewhat below or near the wavelengths of visible light (400–750 nm).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Tyndall Effect in the context of Glacial flour

Rock flour, or glacial flour, consists of fine-grained, silt-sized particles of rock, generated by mechanical grinding of bedrock by glacial erosion or by artificial grinding to a similar size. Because the material is very small, it becomes suspended in meltwater making the water appear cloudy, which is sometimes known as glacial milk.

When the sediments enter a river, they turn it grey, light brown, iridescent blue-green, or milky white. If the river flows into a glacial lake, the lake may appear turquoise in colour as a result. When appearing as any shade of blue, the colour is most commonly caused by the Tyndall Effect, with the particular hue determined by suspended particle size. When flows of the flour are extensive, a distinct layer of a different colour flows into the lake and begins to dissipate and settle as the flow extends from the increase in water flow from the glacier during snow melts and heavy rain periods. Examples of this phenomenon may be seen at Lake Pukaki and Lake Tekapo in New Zealand, Lake Louise, Moraine Lake, Emerald Lake, and Peyto Lake in Canada, Gjende lake in Norway, and several lakes (among others, Nordenskjöld and Pehoé) in Chile's Torres del Paine National Park, and many lakes in the Cascade Range of Washington State (including Diablo Lake, Gorge Lake, and Blanca Lake).

↑ Return to Menu