Twistor theory in the context of Complex function


Twistor theory in the context of Complex function

Twistor theory Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Twistor theory in the context of "Complex function"


⭐ Core Definition: Twistor theory

In theoretical physics, twistor theory was proposed by Roger Penrose in 1967 as a possible path to quantum gravity and has evolved into a widely studied branch of theoretical and mathematical physics. Penrose's idea was that twistor space should be the basic arena for physics from which space-time itself should emerge. It has led to powerful mathematical tools that have applications to differential and integral geometry, nonlinear differential equations and representation theory, and in physics to general relativity, quantum field theory, and the theory of scattering amplitudes.

Twistor theory arose in the context of the rapidly expanding mathematical developments in Einstein's theory of general relativity in the late 1950s and in the 1960s and carries a number of influences from that period. In particular, Roger Penrose has credited Ivor Robinson as an important early influence in the development of twistor theory, through his construction of so-called Robinson congruences.

↓ Menu
HINT:

In this Dossier

Twistor theory in the context of Complex analysis

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of a complex variable of complex numbers. It is helpful in many branches of mathematics, including real analysis, algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.

At first glance, complex analysis is the study of holomorphic functions that are the differentiable functions of a complex variable. By contrast with the real case, a holomorphic functions is always infinitely differentiable and equal to the sum of its Taylor series in some neighborhood of each point of its domain.This makes methods and results of complex analysis significantly different from that of real analysis. In particular, contrarily, with the real case, the domain of every holomorphic function can be uniquely extended to almost the whole complex plane. This implies that the study of real analytic functions needs often the power of complex analysis. This is, in particular, the case in analytic combinatorics.

View the full Wikipedia page for Complex analysis
↑ Return to Menu

Twistor theory in the context of Functions of a complex variable

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of a complex variable of complex numbers. It is helpful in many branches of mathematics, including real analysis, algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.

At first glance, complex analysis is the study of holomorphic functions that are the differentiable functions of a complex variable. By contrast with the real case, a holomorphic function is always infinitely differentiable and equal to the sum of its Taylor series in some neighborhood of each point of its domain.This makes methods and results of complex analysis significantly different from that of real analysis. In particular, contrarily, with the real case, the domain of every holomorphic function can be uniquely extended to almost the whole complex plane. This implies that the study of real analytic functions needs often the power of complex analysis. This is, in particular, the case in analytic combinatorics.

View the full Wikipedia page for Functions of a complex variable
↑ Return to Menu

Twistor theory in the context of Twistor space

In mathematics and theoretical physics (especially twistor theory), twistor space is the complex vector space of solutions of the twistor equation . It was described in the 1960s by Roger Penrose and Malcolm MacCallum. According to Andrew Hodges, twistor space is useful for conceptualizing the way photons travel through space, using four complex numbers. He also posits that twistor space may aid in understanding the asymmetry of the weak nuclear force.

View the full Wikipedia page for Twistor space
↑ Return to Menu