Tryptophan in the context of Melatonin


Tryptophan in the context of Melatonin

Tryptophan Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Tryptophan in the context of "Melatonin"


⭐ Core Definition: Tryptophan

Tryptophan (symbol Trp or W) is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromatic beta carbon substituent. Tryptophan is also a precursor to the neurotransmitter serotonin, the hormone melatonin, and vitamin B3 (niacin). It is encoded by the codon UGG.

↓ Menu
HINT:

In this Dossier

Tryptophan in the context of Essential amino acids

An essential amino acid, or indispensable amino acid, is an amino acid that cannot be synthesized from scratch by the organism fast enough to supply its demand, and must therefore come from the diet. Of the 21 amino acids common to all life forms, the nine amino acids humans cannot synthesize are valine, isoleucine, leucine, methionine, phenylalanine, tryptophan, threonine, histidine, and lysine.

Six other amino acids are considered conditionally essential in the human diet, meaning their synthesis can be limited under special pathophysiological conditions, such as prematurity in the infant or individuals in severe catabolic distress. These six are arginine, cysteine, glycine, glutamine, proline, and tyrosine. Six amino acids are non-essential (dispensable) in humans, meaning they can be synthesized in sufficient quantities in the body. These six are alanine, aspartic acid, asparagine, glutamic acid, serine, and selenocysteine (considered the 21st amino acid). Pyrrolysine (considered the 22nd amino acid), which is proteinogenic only in certain microorganisms, is not used by and therefore non-essential for most organisms, including humans.

View the full Wikipedia page for Essential amino acids
↑ Return to Menu

Tryptophan in the context of Vitamin deficiency

Vitamin deficiency is the condition of a long-term lack of a vitamin. When caused by not enough vitamin intake it is classified as a primary deficiency, whereas when due to an underlying disorder such as malabsorption it is called a secondary deficiency. An underlying disorder can have 2 main causes:

Conversely, hypervitaminosis refers to symptoms caused by vitamin intakes in excess of needs, especially for fat-soluble vitamins that can accumulate in body tissues.

View the full Wikipedia page for Vitamin deficiency
↑ Return to Menu

Tryptophan in the context of Niacin (substance)

Nicotinic acid, or niacin, is an organic compound and a vitamer of vitamin B3, an essential human nutrient. It is produced by plants and animals from the amino acid tryptophan.

View the full Wikipedia page for Niacin (substance)
↑ Return to Menu

Tryptophan in the context of Pepsin

Pepsin /ˈpɛpsɪn/ is an endopeptidase that breaks down proteins into smaller peptides and amino acids. It is one of the main digestive enzymes in the digestive systems of humans and many other animals, where it helps digest the proteins in food. Pepsin is an aspartic protease, using a catalytic aspartate in its active site.

It is one of three principal endopeptidases (enzymes cutting proteins in the middle) in the human digestive system, the other two being chymotrypsin and trypsin. There are also exopeptidases which remove individual amino acids at both ends of proteins (carboxypeptidases produced by the pancreas and aminopeptidases secreted by the small intestine). During the process of digestion, these enzymes, each of which is specialized in severing links between particular types of amino acids, collaborate to break down dietary proteins into their components, i.e., peptides and amino acids, which can be readily absorbed by the small intestine. The cleavage specificity of pepsin is broad, but some amino acids like tyrosine, phenylalanine and tryptophan increase the probability of cleavage.

View the full Wikipedia page for Pepsin
↑ Return to Menu

Tryptophan in the context of Monoamine

Monoamine neurotransmitters are neurotransmitters and neuromodulators that contain one amino group connected to an aromatic ring by a two-carbon chain (such as -CH2-CH2-). Examples are dopamine, norepinephrine and serotonin.

All monoamines are derived from aromatic amino acids like phenylalanine, tyrosine, and tryptophan by the action of aromatic amino acid decarboxylase enzymes. They are deactivated in the body by the enzymes known as monoamine oxidases which clip off the amine group.

View the full Wikipedia page for Monoamine
↑ Return to Menu

Tryptophan in the context of Kynureninase

Kynureninase or L-Kynurenine hydrolase (KYNU) (EC 3.7.1.3) is a PLP dependent enzyme that catalyses the cleavage of kynurenine (Kyn) into anthranilic acid (Ant). It can also act on 3-hydroxykynurenine (to produce 3-hydroxyanthranilate) and some other (3-arylcarbonyl)-alanines. Humans express one kynureninase enzyme that is encoded by the KYNU gene located on chromosome 2.

KYNU is part of the pathway for the catabolism of Trp and the biosynthesis of NAD cofactors from tryptophan (Trp).

View the full Wikipedia page for Kynureninase
↑ Return to Menu

Tryptophan in the context of Kynurenine pathway

The kynurenine pathway is a metabolic pathway leading to the production of nicotinamide adenine dinucleotide (NAD). Metabolites involved in the kynurenine pathway include tryptophan, kynurenine, kynurenic acid, xanthurenic acid, quinolinic acid, and 3-hydroxykynurenine. The kynurenine pathway is responsible for about 95% of total tryptophan catabolism. Disruption in the pathway is associated with certain genetic and psychiatric disorders.

View the full Wikipedia page for Kynurenine pathway
↑ Return to Menu

Tryptophan in the context of Niacin (nutrient)

Vitamin B3, colloquially referred to as niacin, is a vitamin family that includes three forms, or vitamers: nicotinic acid (niacin), nicotinamide (niacinamide), and nicotinamide riboside. All three forms of vitamin B3 are converted within the body to nicotinamide adenine dinucleotide (NAD). NAD is required for human life and people are unable to make it within their bodies without either vitamin B3 or tryptophan. Nicotinamide riboside was identified as a form of vitamin B3 in 2004.

Niacin (the nutrient) can be manufactured by plants and animals from the amino acid tryptophan. Niacin is obtained in the diet from a variety of whole and processed foods, with highest contents in fortified packaged foods, meat, poultry, red fish such as tuna and salmon, lesser amounts in nuts, legumes and seeds. Niacin as a dietary supplement is used to treat pellagra, a disease caused by niacin deficiency. Signs and symptoms of pellagra include skin and mouth lesions, anemia, headaches, and tiredness. Many countries mandate its addition to wheat flour or other food grains, thereby reducing the risk of pellagra.

View the full Wikipedia page for Niacin (nutrient)
↑ Return to Menu

Tryptophan in the context of Pellagra

Pellagra is a disease caused by a lack of the vitamin niacin (vitamin B3). Symptoms include inflamed skin, diarrhea, dementia, and sores in the mouth. Areas of the skin exposed to friction and radiation are typically affected first. Over time affected skin may become darker, stiffen, peel, or bleed.

There are two main types of pellagra, primary and secondary. Primary pellagra is due to a diet that does not contain enough niacin and tryptophan. Secondary pellagra is due to a poor ability to use the niacin within the diet. This can occur as a result of alcoholism, long-term diarrhea, carcinoid syndrome, Hartnup disease, and a number of medications such as isoniazid. Diagnosis is typically based on symptoms and may be assisted by urine testing.

View the full Wikipedia page for Pellagra
↑ Return to Menu