Trojan (astronomy) in the context of "Lagrangian point"

Play Trivia Questions online!

or

Skip to study material about Trojan (astronomy) in the context of "Lagrangian point"

Ad spacer

⭐ Core Definition: Trojan (astronomy)

In astronomy, a trojan is a small celestial body (mostly asteroids) that shares the orbit of a larger body, remaining in a stable orbit approximately 60° ahead of or behind the main body near one of its Lagrangian points L4 and L5. Trojans can share the orbits of planets or of large moons.

Trojans are one type of co-orbital object. In this arrangement, a star and a planet orbit about their common barycenter, which is close to the center of the star because it is usually much more massive than the orbiting planet. In turn, a much smaller mass than both the star and the planet, located at one of the Lagrangian points of the star–planet system, is subject to a combined gravitational force that acts through this barycenter. Hence the smallest object orbits around the barycenter with the same orbital period as the planet, and the arrangement can remain stable over time.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Trojan (astronomy) in the context of Small Solar System body

A small Solar System body (SSSB) is an object in the Solar System that is neither a planet, a dwarf planet, nor a natural satellite. The term was first defined in 2006 by the International Astronomical Union (IAU) as follows: "All other objects, except satellites, orbiting the Sun shall be referred to collectively as 'Small Solar System Bodies'".

This encompasses all comets and all minor planets other than those that are dwarf planets. Thus SSSBs are: the comets; the classical asteroids, with the exception of the dwarf planet Ceres; the trojans; and the centaurs and trans-Neptunian objects, with the exception of the dwarf planets Pluto, Haumea, Makemake, Quaoar, Orcus, Sedna, Gonggong and Eris and others that may turn out to be dwarf planets.

↑ Return to Menu

Trojan (astronomy) in the context of Neptune trojan

Neptune trojans are bodies that orbit the Sun near one of the stable Lagrangian points of Neptune, similar to the trojans of other planets. They therefore have approximately the same orbital period as Neptune and follow roughly the same orbital path. Thirty-one Neptune trojans are currently known, of which 27 orbit near the Sun–Neptune L4 Lagrangian point 60° ahead of Neptune and four orbit near Neptune's L5 region 60° behind Neptune. The Neptune trojans are termed 'trojans' by analogy with the Jupiter trojans.

The discovery of 2005 TN53 in a high-inclination (>25°) orbit was significant, because it suggested a "thick" cloud of trojans (Jupiter trojans have inclinations up to 40°), which is indicative of freeze-in capture instead of in situ or collisional formation. It is suspected that large (radius ≈ 100 km) Neptune trojans could outnumber Jupiter trojans of that size by an order of magnitude.

↑ Return to Menu

Trojan (astronomy) in the context of Co-orbital configuration

In astronomy, a co-orbital configuration is a configuration of two or more astronomical objects (such as asteroids, moons, or planets) orbiting at the same, or very similar, distance from their primary; i.e., they are in a 1:1 mean-motion resonance. (or 1:-1 if orbiting in opposite directions).

There are several classes of co-orbital objects, depending on their point of libration. The most common and best-known class is the trojan, which librates around one of the two stable Lagrangian points (Trojan points), L4 and L5, 60° ahead of and behind the larger body respectively. Another class is the horseshoe orbit, in which objects librate around 180° from the larger body. Objects librating around 0° are called quasi-satellites.

↑ Return to Menu