Trigeminal nerve in the context of Biting


Trigeminal nerve in the context of Biting

Trigeminal nerve Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Trigeminal nerve in the context of "Biting"


⭐ Core Definition: Trigeminal nerve

In neuroanatomy, the trigeminal nerve (lit. triplet nerve), also known as the fifth cranial nerve, cranial nerve V, or simply CN V, is a cranial nerve responsible for sensation in the face and motor functions such as biting and chewing; it is the most complex of the cranial nerves. Its name (trigeminal, from Latin tri- 'three' and -geminus 'twin') derives from each of the two nerves (one on each side of the pons) having three major branches: the ophthalmic nerve (V1), the maxillary nerve (V2), and the mandibular nerve (V3). The ophthalmic and maxillary nerves are purely sensory, whereas the mandibular nerve supplies motor as well as sensory (or "cutaneous") functions. Adding to the complexity of this nerve is that autonomic nerve fibers as well as special sensory fibers (taste) are contained within it.

The motor division of the trigeminal nerve derives from the basal plate of the embryonic pons, and the sensory division originates in the cranial neural crest. Sensory information from the face and body is processed by parallel pathways in the central nervous system.

↓ Menu
HINT:

In this Dossier

Trigeminal nerve in the context of Taste

The gustatory system or sense of taste is the sensory system that is partially responsible for the perception of taste. Taste is the perception stimulated when a substance in the mouth reacts chemically with taste receptor cells located on taste buds in the oral cavity, mostly on the tongue. Taste, along with the sense of smell and trigeminal nerve stimulation (registering texture, pain, and temperature), determines flavors of food and other substances. Humans have taste receptors on taste buds and other areas, including the upper surface of the tongue and the epiglottis. The gustatory cortex is responsible for the perception of taste.

The tongue is covered with thousands of small bumps called papillae, which are visible to the naked eye. Within each papilla are hundreds of taste buds. The exceptions to this is the filiform papillae that do not contain taste buds. There are between 2000 and 5000 taste buds that are located on the back and front of the tongue. Others are located on the roof, sides and back of the mouth, and in the throat. Each taste bud contains 50 to 100 taste receptor cells.

View the full Wikipedia page for Taste
↑ Return to Menu

Trigeminal nerve in the context of Metencephalon

The metencephalon is the embryonic part of the hindbrain that differentiates into the pons and the cerebellum. It contains a portion of the fourth ventricle and the trigeminal nerve (CN V), abducens nerve (CN VI), facial nerve (CN VII), and a portion of the vestibulocochlear nerve (CN VIII).

View the full Wikipedia page for Metencephalon
↑ Return to Menu

Trigeminal nerve in the context of Secretomotor

The adjective secretomotor refers to the capacity of a structure (often a nerve) to induce a gland to secrete a substance (usually mucus or serous fluid).

Secretomotor nerve endings are frequently contrasted with sensory neuron endings and motor nerve endings. An example of secretomotor activity can be seen with the lacrimal gland, which secretes the aqueous layer of the tear film. The lacrimal branch of the ophthalmic nerve (itself a branch of trigeminal nerve V1) supplies secretomotor innervation to the lacrimal gland, stimulating its secretion of the aqueous layer. However, these nerves fibers originate from the facial nerve (VII) and only travel briefly with fibers from the trigeminal nerve.

View the full Wikipedia page for Secretomotor
↑ Return to Menu

Trigeminal nerve in the context of Buccal nerve

The buccal nerve (long buccal nerve) is a sensory nerve of the face arising from the mandibular nerve (CN V3) (which is itself a branch of the trigeminal nerve). It conveys sensory information from the skin of the cheek, and parts of the oral mucosa, periodontium, and gingiva.

View the full Wikipedia page for Buccal nerve
↑ Return to Menu

Trigeminal nerve in the context of Mixed nerve

A mixed nerve is any nerve that contains both sensory (afferent) and motor (efferent) nerve fibers. All 31 pairs of spinal nerves are mixed nerves. Four of the twelve cranial nervesV, VII, IX and X are mixed nerves.

View the full Wikipedia page for Mixed nerve
↑ Return to Menu

Trigeminal nerve in the context of Eye sockets

In vertebrate anatomy, the orbit is the cavity or socket/hole of the skull in which the eye and its appendages are situated. "Orbit" can refer to the bony socket, or it can also be used to imply the contents. In the adult human, the volume of the orbit is about 28 millilitres (0.99 imp fl oz; 0.95 US fl oz), of which the eye occupies 6.5 ml (0.23 imp fl oz; 0.22 US fl oz). The orbital contents comprise the eye, the orbital and retrobulbar fascia, extraocular muscles, cranial nerves II, III, IV, V, and VI, blood vessels, fat, the lacrimal gland with its sac and duct, the eyelids, medial and lateral palpebral ligaments, cheek ligaments, the suspensory ligament, septum, ciliary ganglion and short ciliary nerves.

View the full Wikipedia page for Eye sockets
↑ Return to Menu

Trigeminal nerve in the context of Magnetoreception

Magnetoreception is a sense which allows an organism to detect the Earth's magnetic field. Animals with this sense include some arthropods, molluscs, and vertebrates (fish, amphibians, reptiles, birds, and mammals). The sense is mainly used for orientation and navigation, but it may help some animals to form regional maps. Experiments on migratory birds provide evidence that they make use of a cryptochrome protein in the eye, relying on the quantum radical pair mechanism to perceive magnetic fields. This effect is extremely sensitive to weak magnetic fields, and readily disturbed by radio-frequency interference, unlike a conventional iron compass.

Birds have populations of nerve cells in their brains triggered by magnetic fields, and cells in their inner ears capable of detecting magnetic fields by electromagnetic induction.In addition, they have iron-containing materials in their upper beaks. There is some evidence that this provides a magnetic sense, mediated by the trigeminal nerve, but the mechanism is unknown.

View the full Wikipedia page for Magnetoreception
↑ Return to Menu

Trigeminal nerve in the context of Ophthalmic nerve

The ophthalmic nerve (CN V1) is a sensory nerve of the head. It is one of three divisions of the trigeminal nerve (CN V), the fifth cranial nerve. It has three major branches which provide sensory innervation to the eye, and the skin of the upper face and anterior scalp, as well as other structures of the head.

View the full Wikipedia page for Ophthalmic nerve
↑ Return to Menu

Trigeminal nerve in the context of Mandibular nerve

In neuroanatomy, the mandibular nerve (V3) is the largest of the three divisions of the trigeminal nerve, the fifth cranial nerve (CN V). Unlike the other divisions of the trigeminal nerve (ophthalmic nerve, maxillary nerve) which contain only afferent fibers, the mandibular nerve contains both afferent and efferent fibers. These nerve fibers innervate structures of the lower jaw and face, such as the tongue, lower lip, and chin. The mandibular nerve also innervates the muscles of mastication.

View the full Wikipedia page for Mandibular nerve
↑ Return to Menu

Trigeminal nerve in the context of Dysarthria

Dysarthria is a speech sound disorder resulting from neurological injury of the motor component of the motor–speech system and is characterized by poor articulation of phonemes. It is a condition in which problems effectively occur with the muscles that help produce speech, often making it very difficult to pronounce words. It is unrelated to problems with understanding language (that is, dysphasia or aphasia), although a person can have both. Any of the speech subsystems (respiration, phonation, resonance, prosody, and articulation) can be affected, leading to impairments in intelligibility, audibility, naturalness, and efficiency of vocal communication. Dysarthria that has progressed to a total loss of speech is referred to as anarthria. The term dysarthria was formed from the Greek components dys- "dysfunctional, impaired" and arthr- "joint, vocal articulation".

Neurological injury due to damage in the central or peripheral nervous system may result in weakness, paralysis, or a lack of coordination of the motor–speech system, producing dysarthria. These effects in turn hinder control over the tongue, throat, lips or lungs; for example, swallowing problems (dysphagia) are also often present in those with dysarthria. Cranial nerves that control the muscles relevant to dysarthria include the trigeminal nerve's motor branch (V), the facial nerve (VII), the glossopharyngeal nerve (IX), the vagus nerve (X), and the hypoglossal nerve (XII).

View the full Wikipedia page for Dysarthria
↑ Return to Menu

Trigeminal nerve in the context of Maxillary nerve

In neuroanatomy, the maxillary nerve (V2) is one of the three branches or divisions of the trigeminal nerve, the fifth (CN V) cranial nerve. It comprises the principal functions of sensation from the maxilla, nasal cavity, sinuses, the palate and subsequently that of the mid-face, and is intermediate, both in position and size, between the ophthalmic nerve and the mandibular nerve.

View the full Wikipedia page for Maxillary nerve
↑ Return to Menu

Trigeminal nerve in the context of Trigeminal ganglion

The trigeminal ganglion (also known as: Gasserian ganglion, semilunar ganglion, or Gasser's ganglion) is the sensory ganglion of each trigeminal nerve (CN V). The trigeminal ganglion is located within the trigeminal cave (Meckel's cave), a cavity formed by dura mater.

View the full Wikipedia page for Trigeminal ganglion
↑ Return to Menu