Tree (graph theory) in the context of "Vertex (graph theory)"

Play Trivia Questions online!

or

Skip to study material about Tree (graph theory) in the context of "Vertex (graph theory)"

Ad spacer

⭐ Core Definition: Tree (graph theory)

A directed tree, oriented tree, polytree, or singly connected network is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirected graph is a forest.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Tree (graph theory) in the context of Strahler number

In mathematics, the Strahler number or Horton–Strahler number of a mathematical tree is a numerical measure of its branching complexity.

These numbers were first developed in hydrology, as a way of measuring the complexity of rivers and streams, by Robert E. Horton (1945) and Arthur Newell Strahler (1952, 1957). In this application, they are referred to as the Strahler stream order and are used to define stream size based on a hierarchy of tributaries.The same numbers also arise in the analysis of L-systems and of hierarchical biological structures such as (biological) trees and animal respiratory and circulatory systems, in register allocation for compilation of high-level programming languages and in the analysis of social networks.

↑ Return to Menu

Tree (graph theory) in the context of Phylogenetic tree

A phylogenetic tree or phylogeny is a graphical representation which shows the evolutionary history between a set of species or taxa during a specific time. In other words, it is a branching diagram or a tree showing the evolutionary relationships among various biological species or other entities based upon similarities and differences in their physical or genetic characteristics. In evolutionary biology, all life on Earth is theoretically part of a single phylogenetic tree, indicating common ancestry. Phylogenetics is the study of phylogenetic trees. The main challenge is to find a phylogenetic tree representing optimal evolutionary ancestry between a set of species or taxa. Computational phylogenetics (also phylogeny inference) focuses on the algorithms involved in finding optimal phylogenetic tree in the phylogenetic landscape.

Phylogenetic trees may be rooted or unrooted. In a rooted phylogenetic tree, each node with descendants represents the inferred most recent common ancestor of those descendants, and the edge lengths in some trees may be interpreted as time estimates. Each node is called a taxonomic unit. Internal nodes are generally called hypothetical taxonomic units, as they cannot be directly observed. Trees are useful in fields of biology such as bioinformatics, systematics, and phylogenetics. Unrooted trees illustrate only the relatedness of the leaf nodes and do not require the ancestral root to be known or inferred.

↑ Return to Menu

Tree (graph theory) in the context of Tree structure

A tree structure, tree diagram, or tree model is a way of representing the hierarchical nature of a structure in a graphical form. It is named a "tree structure" because the classic representation resembles a tree, although the chart is generally upside down compared to a biological tree, with the "stem" at the top and the "leaves" at the bottom.

A tree structure is conceptual, and appears in several forms. For a discussion of tree structures in specific fields, see Tree (data structure) for computer science; insofar as it relates to graph theory, see tree (graph theory) or tree (set theory). Other related articles are listed below.

↑ Return to Menu

Tree (graph theory) in the context of Alkane

In organic chemistry, an alkane, or paraffin (a historical trivial name that also has other meanings), is an acyclic saturated hydrocarbon. In other words, an alkane consists of hydrogen and carbon atoms arranged in a tree structure in which all the carbon–carbon bonds are single. Alkanes have the general chemical formula CnH2n+2. The alkanes range in complexity from the simplest case of methane (CH4), where n = 1 (sometimes called the parent molecule), to arbitrarily large and complex molecules, like hexacontane (C60H122) or 4-methyl-5-(1-methylethyl) octane, an isomer of dodecane (C12H26).

The International Union of Pure and Applied Chemistry (IUPAC) defines alkanes as "acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2, and therefore consisting entirely of hydrogen atoms and saturated carbon atoms". However, some sources use the term to denote any saturated hydrocarbon, including those that are either monocyclic (i.e. the cycloalkanes) or polycyclic, despite them having a distinct general formula (e.g. cycloalkanes are CnH2n).

↑ Return to Menu

Tree (graph theory) in the context of Tree-adjoining grammar

Tree-adjoining grammar (TAG) is a grammar formalism defined by Aravind Joshi. Tree-adjoining grammars are somewhat similar to context-free grammars, but the elementary unit of rewriting is the tree rather than the symbol. Whereas context-free grammars have rules for rewriting symbols as strings of other symbols, tree-adjoining grammars have rules for rewriting the nodes of trees as other trees (see tree (graph theory) and tree (data structure)).

↑ Return to Menu

Tree (graph theory) in the context of Cycle (graph theory)

In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal.

A graph without cycles is called an acyclic graph. A directed graph without directed cycles is called a directed acyclic graph. A connected graph without cycles is called a tree.

↑ Return to Menu