Transmission (telecommunications) in the context of "Fiber-optic communication"

Play Trivia Questions online!

or

Skip to study material about Transmission (telecommunications) in the context of "Fiber-optic communication"

Ad spacer

⭐ Core Definition: Transmission (telecommunications)

In telecommunications, transmission (sometimes abbreviated as "TX") is the process of sending or propagating an analog or digital signal via a medium that is wired, wireless, or fiber-optic.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Transmission (telecommunications) in the context of Communication source

A source or sender is one of the basic concepts of communication and information processing. Sources are objects which encode message data and transmit the information, via a channel, to one or more observers (or receivers).

In the strictest sense of the word, particularly in information theory, a source is a process that generates message data that one would like to communicate, or reproduce as exactly as possible elsewhere in space or time. A source may be modelled as memoryless, ergodic, stationary, or stochastic, in order of increasing generality.

↑ Return to Menu

Transmission (telecommunications) in the context of Information transfer

In telecommunications, information transfer is the process of moving messages containing user information from a source to a sink via a communication channel. In this sense, information transfer is equivalent to data transmission which highlights more practical, technical aspects.

The information transfer rate may or may not be equal to the transmission modulation rate.

↑ Return to Menu

Transmission (telecommunications) in the context of Data signaling rate

In telecommunications, data signaling rate (DSR), also known as gross bit rate, is the aggregate rate at which data passes a point in the transmission path of a data transmission system.

↑ Return to Menu

Transmission (telecommunications) in the context of ISDN

Integrated Services Digital Network (ISDN) is a set of communication standards for simultaneous digital transmission of voice, video, data, and other network services over the digitalised circuits of the public switched telephone network. Work on the standard began in 1980 at Bell Labs and was formally standardized in 1988 in the CCITT "Red Book". By the time the standard was released, newer networking systems with much greater speeds were available, and ISDN saw relatively little uptake in the wider market. One estimate suggests ISDN use peaked at a worldwide total of 25 million subscribers at a time when 1.3 billion analog lines were in use. ISDN has largely been replaced with digital subscriber line (DSL) systems of much higher performance.

Prior to ISDN, the telephone system consisted of digital links like T1/E1 on the long-distance lines between telephone company offices and analog signals on copper telephone wires to the customers, the "last mile". At the time, the network was viewed as a way to transport voice, with some special services available for data using additional equipment like modems or by providing a T1 on the customer's location. What became ISDN started as an effort to digitize the last mile, originally under the name "Public Switched Digital Capacity" (PSDC). This would allow call routing to be completed in an all-digital system, while also offering a separate data line. The Basic Rate Interface, or BRI, is the standard last-mile connection in the ISDN system, offering two 64 kbit/s "bearer" lines and a single 16 kbit/s "data" channel for commands and data.

↑ Return to Menu

Transmission (telecommunications) in the context of Surface wave

In physics, a surface wave is a mechanical wave that propagates along the interface between differing media. A common example is gravity waves along the surface of liquids, such as ocean waves. Gravity waves can also occur within liquids, at the interface between two fluids with different densities. Elastic surface waves can travel along the surface of solids, such as Rayleigh or Love waves. Electromagnetic waves can also propagate as "surface waves" in that they can be guided along with a refractive index gradient or along an interface between two media having different dielectric constants. In radio transmission, a ground wave is a guided wave that propagates close to the surface of the Earth.

↑ Return to Menu

Transmission (telecommunications) in the context of Radio antennas

In radio-frequency engineering, an antenna (American English) or aerial (British English) is an electronic device that converts an alternating electric current into radio waves (transmitting), or radio waves into an electric current (receiving). It is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves (radio waves). In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

An antenna is an array of conductor segments (elements), electrically connected to the receiver or transmitter. Antennas can be designed to transmit and receive radio waves in all horizontal directions equally (omnidirectional antennas), or preferentially in a particular direction (directional, or high-gain, or "beam" antennas). An antenna may include components not connected to the transmitter, parabolic reflectors, horns, or parasitic elements, which serve to direct the radio waves into a beam or other desired radiation pattern. Strong directivity and good efficiency when transmitting are hard to achieve with antennas with dimensions that are much smaller than a half wavelength.

↑ Return to Menu

Transmission (telecommunications) in the context of Line-of-sight propagation

Line-of-sight propagation is a characteristic of electromagnetic radiation or acoustic wave propagation which means waves can only travel in a direct visual path from the source to the receiver without obstacles. Electromagnetic transmission includes light emissions traveling in a straight line. The rays or waves may be diffracted, refracted, reflected, or absorbed by the atmosphere and obstructions with material and generally cannot travel over the horizon or behind obstacles.

In contrast to line-of-sight propagation, at low frequency (below approximately 3 MHz) due to diffraction, radio waves can travel as ground waves, which follow the contour of the Earth. This enables AM radio stations to transmit beyond the horizon. Additionally, frequencies in the shortwave bands between approximately 1 and 30 MHz, can be refracted back to Earth by the ionosphere, called skywave or "skip" propagation, thus giving radio transmissions in this range a potentially global reach.

↑ Return to Menu

Transmission (telecommunications) in the context of Line coding

In telecommunications, a line code is a pattern of voltage, current, or photons used to represent digital data transmitted down a communication channel or written to a storage medium. This repertoire of signals is usually called a constrained code in data storage systems. Some signals are more prone to error than others as the physics of the communication channel or storage medium constrains the repertoire of signals that can be used reliably.

Common line encodings are unipolar, polar, bipolar, and Manchester code.

↑ Return to Menu