Translator (computing) in the context of Machine code


Translator (computing) in the context of Machine code

Translator (computing) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Translator (computing) in the context of "Machine code"


⭐ Core Definition: Translator (computing)

A translator or programming language processor is a computer program that converts the programming instructions written in human convenient form into machine language codes that the computers understand and process. It is a generic term that can refer to a compiler, assembler, or interpreter—anything that converts code from one computer language into another. These include translations between high-level and human-readable computer languages such as C++ and Java, intermediate-level languages such as Java bytecode, low-level languages such as the assembly language and machine code, and between similar levels of language on different computing platforms, as well as from any of these to any other of these.

Software and hardware represent different levels of abstraction in computing. Software is typically written in high-level programming languages, which are easier for humans to understand and manipulate, while hardware implementations involve low-level descriptions of physical components and their interconnections. Translator computing facilitates the conversion between these abstraction levels. Overall, translator computing plays a crucial role in bridging the gap between software and hardware implementations, enabling developers to leverage the strengths of each platform and optimize performance, power efficiency, and other metrics according to the specific requirements of the application.

↓ Menu
HINT:

In this Dossier

Translator (computing) in the context of Computer program

A computer program is a sequence or set of instructions in a programming language for a computer to execute. It is one component of software, which also includes documentation and other intangible components.

A computer program in its human-readable form is called source code. Source code needs another computer program to execute because computers can only execute their native machine instructions. Therefore, source code may be translated to machine instructions using a compiler written for the language. (Assembly language programs are translated using an assembler.) The resulting file is called an executable. Alternatively, source code may execute within an interpreter written for the language.

View the full Wikipedia page for Computer program
↑ Return to Menu

Translator (computing) in the context of Source code

In computing, source code, or simply code or source, is human readable plain text that can eventually result in controlling the behavior of a computer. In order to control a computer, it must be processed by a computer program – either executed directly via an interpreter or translated into a more computer-consumable form such as via a compiler. Sometimes, code is compiled directly to machine code so that it can be run in the native language of the computer without further processing. But, many modern environments involve compiling to an intermediate representation such as bytecode that can either run via an interpreter or be compiled on-demand to machine code via just-in-time compilation.

View the full Wikipedia page for Source code
↑ Return to Menu

Translator (computing) in the context of Compiler

In computing, a compiler is software that translates computer code written in one programming language (the source language) into another language (the target language). The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a low-level programming language (e.g. assembly language, object code, or machine code) to create an executable program.

There are many different types of compilers which produce output in different useful forms. A cross-compiler produces code for a different CPU or operating system than the one on which the cross-compiler itself runs. A bootstrap compiler is often a temporary compiler, used for compiling a more permanent or better optimized compiler for a language.

View the full Wikipedia page for Compiler
↑ Return to Menu

Translator (computing) in the context of Disassembler

A disassembler is a computer program that translates machine language into assembly language—the inverse operation to that of an assembler. The output of disassembly is typically formatted for human-readability rather than for input to an assembler, making disassemblers primarily a reverse-engineering tool. Common uses include analyzing the output of high-level programming language compilers and their optimizations, recovering source code when the original is lost, performing malware analysis, modifying software (such as binary patching), and software cracking.

A disassembler differs from a decompiler, which targets a high-level language rather than an assembly language. A fundamental method of software analysis is disassembly. Unlike decompilers, which make attempts at recreating high-level human readable structures using binaries, disassemblers are aimed at generating a symbolic assembly, meaning it's attempting to reconstruct the assembly closest to its executions. Disassembled code is hence normally more accurate but also lower level and less abstract than decompiled code and thus it can be much more easily analyzed.

View the full Wikipedia page for Disassembler
↑ Return to Menu

Translator (computing) in the context of Directive (programming)

In computer programming, a directive or pragma (from "pragmatic") is a language construct that specifies how a compiler (or other translator) should process its input. Depending on the programming language, directives may or may not be part of the grammar of the language and may vary from compiler to compiler. They can be processed by a preprocessor to specify compiler behavior, or function as a form of in-band parameterization.

In some cases directives specify global behavior, while in other cases they only affect a local section, such as a block of programming code. In some cases, such as some C programs, directives are optional compiler hints and may be ignored, but normally they are prescriptive and must be followed. However, a directive does not perform any action in the language itself, but rather only a change in the behavior of the compiler.

View the full Wikipedia page for Directive (programming)
↑ Return to Menu