Transesterification in the context of Catalyst


Transesterification in the context of Catalyst

Transesterification Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Transesterification in the context of "Catalyst"


⭐ Core Definition: Transesterification

Transesterification is the process of exchanging the organic functional group R″ of an ester with the organic group R' of an alcohol. These reactions are often catalyzed by the addition of an acid or base catalyst. Strong acids catalyze the reaction by donating a proton to the carbonyl group, thus making it a more potent electrophile. Bases catalyze the reaction by removing a proton from the alcohol, thus making it more nucleophilic. The reaction can also be accomplished with the help of enzymes, particularly lipases (one example is the lipase E.C.3.1.1.3).

If the alcohol produced by the reaction can be separated from the reactants by distillation this will drive the equilibrium toward the products. This means that esters with larger alkoxy groups can be made from methyl or ethyl esters in high purity by heating the mixture of ester, acid/base, and large alcohol.

↓ Menu
HINT:

In this Dossier

Transesterification in the context of Biodiesel

Biodiesel is a renewable biofuel, a form of diesel fuel, derived from biological sources like vegetable oils, animal fats, or recycled greases, and consisting of long-chain fatty acid esters. It is typically made from fats.

The roots of biodiesel as a fuel source can be traced back to when J. Patrick and E. Duffy first conducted transesterification of vegetable oil in 1853, predating Rudolf Diesel's development of the diesel engine. Diesel's engine, initially designed for mineral oil, successfully ran on peanut oil at the 1900 Paris Exposition. This landmark event highlighted the potential of vegetable oils as an alternative fuel source. The interest in using vegetable oils as fuels resurfaced periodically, particularly during resource-constrained periods such as World War II. However, challenges such as high viscosity and resultant engine deposits were significant hurdles. The modern form of biodiesel emerged in the 1930s, when a method was found for transforming vegetable oils for fuel use, laying the groundwork for contemporary biodiesel production.

View the full Wikipedia page for Biodiesel
↑ Return to Menu

Transesterification in the context of Fatty acid methyl ester

Fatty acid methyl esters (FAME) are a type of fatty acid ester that are derived by transesterification of fats with methanol. The molecules in biodiesel are primarily FAME, usually obtained from vegetable oils by transesterification. They are used to produce detergents and biodiesel. FAME are typically produced by an alkali-catalyzed reaction between fats and methanol in the presence of base such as sodium hydroxide, sodium methoxide or potassium hydroxide. One reason for using FAME (fatty acid methyl esters) in biodiesel production, rather than free fatty acids, is to mitigate the potential corrosion they can cause to metals of engines, production facilities, and related infrastructure. While free fatty acids are only mildly acidic, over time they can lead to cumulative corrosion. In contrast, their esters, such as FAME, are less corrosive and therefore preferred for biodiesel production. As an improved quality, FAMEs also usually have about 12-15 units higher cetane number than their unesterified counterparts.

View the full Wikipedia page for Fatty acid methyl ester
↑ Return to Menu