Trajectory in the context of Galileo's ship


Trajectory in the context of Galileo's ship

Trajectory Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Trajectory in the context of "Galileo's ship"


⭐ Core Definition: Trajectory

A trajectory or flight path is the path that an object with mass in motion follows through space as a function of time. In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete trajectory is defined by position and momentum, simultaneously.

The mass might be a projectile or a satellite. For example, it can be an orbit — the path of a planet, asteroid, or comet as it travels around a central mass.

↓ Menu
HINT:

In this Dossier

Trajectory in the context of Isaac Newton

Sir Isaac Newton (/ˈnjtən/ ; 4 January [O.S. 25 December] 1643 – 31 March [O.S. 20 March] 1727) was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, author, and inventor. He was a key figure in the Scientific Revolution and the Enlightenment that followed. His book Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), first published in 1687, achieved the first great unification in physics and established classical mechanics. Newton also made seminal contributions to optics, and shares credit with German mathematician Gottfried Wilhelm Leibniz for formulating infinitesimal calculus, though he developed calculus years before Leibniz. Newton contributed to and refined the scientific method, and his work is considered the most influential in bringing forth modern science.

In the Principia, Newton formulated the laws of motion and universal gravitation that formed the dominant scientific viewpoint for centuries until it was superseded by the theory of relativity. He used his mathematical description of gravity to derive Kepler's laws of planetary motion, account for tides, the trajectories of comets, the precession of the equinoxes and other phenomena, eradicating doubt about the Solar System's heliocentricity. Newton solved the two-body problem and introduced the three-body problem. He demonstrated that the motion of objects on Earth and celestial bodies could be accounted for by the same principles. Newton's inference that the Earth is an oblate spheroid was later confirmed by the geodetic measurements of Alexis Clairaut, Charles Marie de La Condamine, and others, convincing most European scientists of the superiority of Newtonian mechanics over earlier systems. He was also the first to calculate the age of Earth by experiment, and described a precursor to the modern wind tunnel. Further, he was the first to provide a quantitative estimate of the solar mass.

View the full Wikipedia page for Isaac Newton
↑ Return to Menu

Trajectory in the context of Orbit

In celestial mechanics, an orbit is the curved trajectory of an object under the influence of an attracting force. Known as an orbital revolution, examples include the trajectory of a planet around a star, a natural satellite around a planet, or an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion.

For most situations, orbital motion is adequately approximated by Newtonian mechanics, which explains gravity as a force obeying an inverse-square law. However, Albert Einstein's general theory of relativity, which accounts for gravity as due to curvature of spacetime, with orbits following geodesics, provides a more accurate calculation and understanding of the exact mechanics of orbital motion.

View the full Wikipedia page for Orbit
↑ Return to Menu

Trajectory in the context of Projectile

A projectile is an object that is propelled by the application of an external force and then moves freely under the influence of gravity and air resistance. Although any objects in motion through space are projectiles, they are commonly found in warfare and sports (for example, a thrown baseball, kicked football, fired bullet, shot arrow, stone released from catapult).

In ballistics, mathematical equations of motion are used to analyze projectile trajectories through launch, flight, and impact.

View the full Wikipedia page for Projectile
↑ Return to Menu

Trajectory in the context of Voyager 2

Voyager 2 is a space probe launched by NASA on August 20, 1977, as a part of the Voyager program. It was launched on a trajectory towards the gas giants (Jupiter and Saturn) and enabled further encounters with the ice giants (Uranus and Neptune). The only spacecraft to have visited either of the ice giant planets, it was the third of five spacecraft to achieve Solar escape velocity, which allowed it to leave the Solar System. Launched 16 days before its twin Voyager 1, the primary mission of the spacecraft was to study the outer planets and its extended mission is to study interstellar space beyond the Sun's heliosphere.

Voyager 2 successfully fulfilled its primary mission of visiting the Jovian system in 1979, the Saturnian system in 1981, Uranian system in 1986, and the Neptunian system in 1989. The spacecraft is in its extended mission of studying the interstellar medium. It is at a distance of 141.55 AU (21.2 billion km; 13.2 billion mi) from Earth as of November 2025.

View the full Wikipedia page for Voyager 2
↑ Return to Menu

Trajectory in the context of Deflection (physics)

Deflection is a change in a moving object's velocity, hence its trajectory, as a consequence of contact (collision) with a surface or the influence of a non-contact force field. Examples of the former include a ball bouncing off the ground or a bat; examples of the latter include a beam of electrons used to produce a picture, quantum deflection, or the relativistic bending of light due to gravity.

View the full Wikipedia page for Deflection (physics)
↑ Return to Menu

Trajectory in the context of Displacement (geometry)

In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory. A displacement may be identified with the translation that maps the initial position to the final position. Displacement is the shift in location when an object in motion changes from one position to another.For motion over a given interval of time, the displacement divided by the length of the time interval defines the average velocity (a vector), whose magnitude is the average speed (a scalar quantity).

View the full Wikipedia page for Displacement (geometry)
↑ Return to Menu

Trajectory in the context of Sub-orbital spaceflight

A sub-orbital spaceflight is a spaceflight in which the spacecraft reaches outer space, but its trajectory intersects the surface of the gravitating body from which it was launched. Hence, it will not complete one orbital revolution, will not become an artificial satellite nor will it reach escape velocity.

For example, the path of an object launched from Earth that reaches the Kármán line (about 83 km [52 mi] – 100 km [62 mi] above sea level), and then falls back to Earth, is considered a sub-orbital spaceflight. Some sub-orbital flights have been undertaken to test spacecraft and launch vehicles later intended for orbital spaceflight. Other vehicles are specifically designed only for sub-orbital flight; examples include crewed vehicles, such as the X-15 and SpaceShipTwo, and uncrewed ones, such as ICBMs and sounding rockets.

View the full Wikipedia page for Sub-orbital spaceflight
↑ Return to Menu

Trajectory in the context of Ephemeris

In astronomy and celestial navigation, an ephemeris (/ɪˈfɛmərɪs/; pl.ephemerides /ˌɛfəˈmɛrɪˌdz/; from Latin ephemeris 'diary', from Ancient Greek ἐφημερίς (ephēmerís) 'diary, journal') is a book with tables that gives the trajectory of naturally occurring astronomical objects and artificial satellites in the sky, i.e., the position (and possibly velocity) over time. Historically, positions were given as printed tables of values, given at regular intervals of date and time. The calculation of these tables was one of the first applications of mechanical computers. Modern ephemerides are often provided in electronic form. However, printed ephemerides are still produced, as they are useful when computational devices are not available.

The astronomical position calculated from an ephemeris is often given in the spherical polar coordinate system of right ascension and declination, together with the distance from the origin if applicable. Some of the astronomical phenomena of interest to astronomers are eclipses, apparent retrograde motion/planetary stations, planetary ingresses, sidereal time, positions for the mean and true nodes of the moon, the phases of the Moon, and the positions of minor celestial bodies such as Chiron.

View the full Wikipedia page for Ephemeris
↑ Return to Menu

Trajectory in the context of Copernican heliocentrism

Copernican heliocentrism is the astronomical model developed by Nicolaus Copernicus and published in 1543. This model positioned the Sun near the center of the Universe, motionless, with Earth and the other planets orbiting around it in circular paths, modified by epicycles, and at uniform speeds. The Copernican model challenged the geocentric model of Ptolemy that had prevailed for centuries, which had placed Earth at the center of the Universe.

Although Copernicus had circulated an outline of his own theory to colleagues sometime before 1514, he did not decide to publish it until he was urged to do so later by his pupil Rheticus. His model was an alternative to the longstanding Ptolemaic model that purged astronomy of the equant in order to satisfy the theological and philosophical ideal that all celestial motion must be perfect and uniform, preserving the metaphysical implications of a mathematically ordered cosmos. His heliostatic model retained several false Ptolemaic assumptions such as the planets' circular orbits, epicycles, and uniform speeds, while at the same time using accurate ideas such as:

View the full Wikipedia page for Copernican heliocentrism
↑ Return to Menu

Trajectory in the context of Molecular dynamics

Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of the system. In the most common version, the trajectories of atoms and molecules are determined by numerically solving Newton's equations of motion for a system of interacting particles, where forces between the particles and their potential energies are often calculated using interatomic potentials or molecular mechanical force fields. MD simulations are widely applied in chemical physics, materials science, and biophysics.

Because molecular systems typically consist of a vast number of particles, it is impossible to determine the properties of such complex systems analytically; MD simulation circumvents this problem by using numerical methods. However, long MD simulations are mathematically ill-conditioned, generating cumulative errors in numerical integration that can be minimized with proper selection of algorithms and parameters, but not eliminated.

View the full Wikipedia page for Molecular dynamics
↑ Return to Menu

Trajectory in the context of Astrodynamics

Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Astrodynamics is a core discipline within space-mission design and control.

Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity, including both spacecraft and natural astronomical bodies such as star systems, planets, moons, and comets. Orbital mechanics focuses on spacecraft trajectories, including orbital maneuvers, orbital plane changes, and interplanetary transfers, and is used by mission planners to predict the results of propulsive maneuvers.

View the full Wikipedia page for Astrodynamics
↑ Return to Menu

Trajectory in the context of Curling

Curling is a sport in which players slide stones on a sheet of ice toward a target area that is segmented into four concentric circles. It is related to bowls, boules, and shuffleboard. Two teams, each with four players, take turns sliding heavy, polished granite stones, also called rocks, across the ice curling sheet toward the house, a circular target marked on the ice. Each team has eight stones, with each player throwing two. The goal is to accumulate the highest score for a game; points are scored for the stones resting closest to the centre of the house at the conclusion of each end, which is completed when both teams have thrown all of their stones once. A game usually consists of eight or ten ends.

The player throwing the stone creates a curved trajectory, known as "curl", by gently rotating the stone as they release it. The stone’s path can also be influenced by two sweepers using brooms or brushes, who move alongside it and sweep the ice in its path. Sweeping reduces friction, allowing the stone to travel further and in a straighter line, with less curl. Strategy and teamwork play a crucial role in selecting the optimal path and final placement of the stone, and the skill of the players determines how accurately the stone follows the intended course.

View the full Wikipedia page for Curling
↑ Return to Menu

Trajectory in the context of Golf club

A golf club is a club used to hit a golf ball in a game of golf. Each club is composed of a shaft with a grip and a club head. Woods are mainly used for long-distance fairway or tee shots; irons, the most versatile class, are used for a variety of shots; hybrids that combine design elements of woods and irons are becoming increasingly popular; putters are used mainly on the green to roll the ball into the hole. A set of clubs is limited by the rules of golf to a maximum of 14 golf clubs, and while there are traditional combinations sold at retail as matched sets, players are free to use any combination of legal clubs.

The most significant difference between clubs of the same type is loft, or the angle between the club's face and the vertical plane. It is loft that is the primary determinant of the ascending trajectory of the golf ball, with the tangential angle of the club head's swing arc at impact being a secondary and relatively minor consideration (though these small changes in swing angle can nevertheless have a significant influence on launch angle when using low-lofted clubs). The impact of the club compresses the ball, while grooves on the club face give the ball backspin. Together, the compression and backspin create lift. The majority of woods and irons are labeled with a number; higher numbers usually indicate shorter shafts and higher lofts, which give the ball a higher and shorter trajectory.

View the full Wikipedia page for Golf club
↑ Return to Menu

Trajectory in the context of Aerial bomb

An aerial bomb is a type of explosive or incendiary weapon intended to travel through the air on a predictable trajectory. Engineers usually develop such bombs to be dropped from an aircraft.

The use of aerial bombs is termed aerial bombing.

View the full Wikipedia page for Aerial bomb
↑ Return to Menu

Trajectory in the context of Chaos theory

Chaos theory is an interdisciplinary area of scientific study and branch of mathematics. It focuses on underlying patterns and deterministic laws of dynamical systems that are highly sensitive to initial conditions. These were once thought to have completely random states of disorder and irregularities. Chaos theory states that within the apparent randomness of chaotic complex systems, there are underlying patterns, interconnection, constant feedback loops, repetition, self-similarity, fractals and self-organization. The butterfly effect, an underlying principle of chaos, describes how a small change in one state of a deterministic nonlinear system can result in large differences in a later state (meaning there is sensitive dependence on initial conditions). A metaphor for this behavior is that a butterfly flapping its wings in Brazil can cause or prevent a tornado in Texas.

Small differences in initial conditions, such as those due to errors in measurements or due to rounding errors in numerical computation, can yield widely diverging outcomes for such dynamical systems, rendering long-term prediction of their behavior impossible in general. This can happen even though these systems are deterministic, meaning that their future behavior follows a unique evolution and is fully determined by their initial conditions, with no random elements involved. In other words, despite the deterministic nature of these systems, this does not make them predictable. This behavior is known as deterministic chaos, or simply chaos. The theory was summarized by Edward Lorenz as:

View the full Wikipedia page for Chaos theory
↑ Return to Menu