Tractography in the context of Subcortical


Tractography in the context of Subcortical

Tractography Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Tractography in the context of "Subcortical"


⭐ Core Definition: Tractography

In neuroscience, tractography is a 3D modeling technique used to visually represent nerve tracts using data collected by diffusion MRI. It uses special techniques of magnetic resonance imaging (MRI) and computer-based diffusion MRI. The results are presented in two- and three-dimensional images called tractograms.

In addition to the long tracts that connect the brain to the rest of the body, there are complicated neural circuits formed by short connections among different cortical and subcortical regions. The existence of these tracts and circuits has been revealed by histochemistry and biological techniques on post-mortem specimens. Nerve tracts are not identifiable by direct exam, CT, or MRI scans. This difficulty explains the paucity of their description in neuroanatomy atlases and the poor understanding of their functions.

↓ Menu
HINT:

In this Dossier

Tractography in the context of Nerve tract

A nerve tract is a bundle of nerve fibers (axons) connecting nuclei of the central nervous system. In the peripheral nervous system, this is known as a nerve fascicle, and has associated connective tissue. The main nerve tracts in the central nervous system are of three types: association fibers, commissural fibers, and projection fibers. A nerve tract may also be referred to as a commissure, decussation, or neural pathway. A commissure connects the two cerebral hemispheres at the same levels, while a decussation connects at different levels (crosses obliquely).

View the full Wikipedia page for Nerve tract
↑ Return to Menu

Tractography in the context of Connectome

A connectome (/kəˈnɛktm/) is a comprehensive map of neural connections in the brain, and may be thought of as its "wiring diagram". These maps are available in varying levels of detail. A functional connectome shows connections between various brain regions, but not individual neurons. These are available for large animals, including mice and humans, are normally obtained by techniques such as MRI, and have a scale of millimeters. At the other extreme are neural connectomes, which show individual neurons and their interconnections. These are usually obtained by electron microscopy (EM) and have a scale of nanometers. They are only available for small creatures such as the worm C. elegans and the fruit fly Drosophila melanogaster, and small regions of mammal brains. Finally there are chemical connectomes, showing which neurons emit, and are sensitive to, a wide variety of neuromodulators. As of 2025, only C. elegans has such a connectome.

The significance of the connectome stems from the realization that the structure and function of any brain are intricately linked, through multiple levels and modes of brain connectivity. There are strong natural constraints on which neurons or neural populations can interact, or how strong or direct their interactions are. Indeed, the foundation of human cognition lies in the pattern of dynamic interactions shaped by the connectome.

View the full Wikipedia page for Connectome
↑ Return to Menu

Tractography in the context of Diffusion MRI

Diffusion-weighted magnetic resonance imaging (DWI or DW-MRI) is the use of specific MRI sequences as well as software that generates images from the resulting data that uses the diffusion of water molecules to generate contrast in MR images. It allows the mapping of the diffusion process of molecules, mainly water, in biological tissues, in vivo and non-invasively. Molecular diffusion in tissues is not random, but reflects interactions with many obstacles, such as macromolecules, fibers, and membranes. Water molecule diffusion patterns can therefore reveal microscopic details about tissue architecture, either normal or in a diseased state. A special kind of DWI, diffusion tensor imaging (DTI), has been used extensively to map white matter tractography in the brain.

View the full Wikipedia page for Diffusion MRI
↑ Return to Menu