Total ordering in the context of Transitive relation


Total ordering in the context of Transitive relation

Total ordering Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Total ordering in the context of "Transitive relation"


⭐ Core Definition: Total ordering

In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation on some set , which satisfies the following for all and in :

  1. (reflexive).
  2. If and then (transitive).
  3. If and then (antisymmetric).
  4. or (strongly connected, formerly called totality).

Requirements 1. to 3. just make up the definition of a partial order.Reflexivity (1.) already follows from strong connectedness (4.), but is required explicitly by many authors nevertheless, to indicate the kinship to partial orders.Total orders are sometimes also called simple, connex, or full orders.

↓ Menu
HINT:

In this Dossier

Total ordering in the context of Well-order

In mathematics, a well-order (or well-ordering or well-order relation) on a set S is a total ordering on S with the property that every non-empty subset of S has a least element in this ordering. The set S together with the ordering is then called a well-ordered set (or woset). In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering.

Every non-empty well-ordered set has a least element. Every element s of a well-ordered set, except a possible greatest element, has a unique successor (next element), namely the least element of the subset of all elements greater than s. There may be elements, besides the least element, that have no predecessor (see § Natural numbers below for an example). A well-ordered set S contains for every subset T with an upper bound a least upper bound, namely the least element of the subset of all upper bounds of T in S.

View the full Wikipedia page for Well-order
↑ Return to Menu