Tire in the context of Mold release agent


Tire in the context of Mold release agent

Tire Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Tire in the context of "Mold release agent"


⭐ Core Definition: Tire

A tire (North American English) or tyre (Commonwealth English) is a ring-shaped component that surrounds a wheel's rim to transfer a vehicle's load from the axle through the wheel to the ground and to provide traction on the surface over which the wheel travels. Most tires, such as those for automobiles and bicycles, are pneumatically inflated structures, providing a flexible cushion that absorbs shock as the tire rolls over rough features on the surface. Tires provide a footprint, called a contact patch, designed to match the vehicle's weight and the bearing on the surface that it rolls over by exerting a pressure that will avoid deforming the surface.

The materials of modern pneumatic tires are synthetic rubber, natural rubber, fabric, and wire, along with carbon black and other chemical compounds. They consist of a tread and a body. The tread provides traction while the body provides containment for a quantity of compressed air. Before rubber was developed, tires were metal bands fitted around wooden wheels to hold the wheel together under load and to prevent wear and tear. Early rubber tires were solid (not pneumatic). Pneumatic tires are used on many vehicles, including cars, bicycles, motorcycles, buses, trucks, heavy equipment, and aircraft. Metal tires are used on locomotives and railcars, and solid rubber (or other polymers) tires are also used in various non-automotive applications, such as casters, carts, lawnmowers, and wheelbarrows.

↓ Menu
HINT:

In this Dossier

Tire in the context of Fuel station

A filling station (also known as a gas station [US] or petrol station [UK/AU]) is a facility that sells fuel and engine lubricants for motor vehicles. It serves as a local fuel depot and retailer who receive fuel products from refineries (via regular tank truck resupplies), keep the fuels in (typically underground) storage tanks, and distribute individual product to motorist consumers at a daily varied price.

The most common fuels sold are motor fuels such as gasoline (a.k.a. petrol, often as multiple products according to different octane ratings) and diesel fuel, as well as liquified petroleum gas (LPG, i.e. autogas), compressed natural gas, compressed hydrogen, hydrogen compressed natural gas, liquid hydrogen, kerosene, alcohol fuels (like methanol, ethanol, butanol, and propanol), biofuels (like straight vegetable oil and biodiesel), or other types of alternative fuels. Fuel dispensers are used to pump fuel into the fuel tanks within vehicles, gauge the volume of fuel transferred to the vehicle, and calculate the financial cost the consumer must pay. Besides fuel pumps, another significant device found in filling stations and capable of refueling certain (compressed-air) vehicles is an air compressor. However, these are generally used to inflate car tires.

View the full Wikipedia page for Fuel station
↑ Return to Menu

Tire in the context of Compressed air

Compressed air is air kept under a pressure that is greater than atmospheric pressure. Compressed air in vehicle tires and shock absorbers are commonly used for improved traction and reduced vibration. Compressed air is an important medium for the transfer of energy in industrial processes and is used for power tools such as air hammers, drills, wrenches, and others, as well as to atomize paint, to operate air cylinders for automation, and can also be used to propel vehicles. Brakes applied by compressed air made large railway trains safer and more efficient to operate. Compressed air brakes are also found on large highway vehicles.

Compressed air is used as a breathing gas by underwater divers. The diver may carry it in a high-pressure diving cylinder, or supplied from the surface at lower pressure through an air line or diver's umbilical. Similar arrangements are used in breathing apparatus used by firefighters, mine rescue workers and industrial workers in hazardous atmospheres.

View the full Wikipedia page for Compressed air
↑ Return to Menu

Tire in the context of Fuel efficiency

Fuel efficiency (or fuel economy) is a form of thermal efficiency, meaning the ratio of effort to result of a process that converts chemical potential energy contained in a carrier (fuel) into kinetic energy or work. Overall fuel efficiency may vary per device, which in turn may vary per application, and this spectrum of variance is often illustrated as a continuous energy profile. Non-transportation applications, such as industry, benefit from increased fuel efficiency, especially fossil fuel power plants or industries dealing with combustion, such as ammonia production during the Haber process.

In the context of transport, fuel economy is the energy efficiency of a particular vehicle, given as a ratio of distance traveled per unit of fuel consumed. It is dependent on several factors including engine efficiency, transmission design, and tire design. In most countries, using the metric system, fuel economy is stated as "fuel consumption" in liters per 100 kilometers (L/100 km) or kilometers per liter (km/L or kmpl). In a number of countries still using other systems, fuel economy is expressed in miles per gallon (mpg), for example in the US and usually also in the UK (imperial gallon); there is sometimes confusion as the imperial gallon is 20% larger than the US gallon so that mpg values are not directly comparable. Traditionally, litres per mil were used in Norway and Sweden, but both have aligned to the EU standard of L/100 km.

View the full Wikipedia page for Fuel efficiency
↑ Return to Menu

Tire in the context of Rubber-tyred metro

A rubber-tyred metro or rubber-tired metro is a form of rapid transit system that uses a mix of road and rail technology. The vehicles have wheels with rubber tires that run on a roll way inside guide bars for traction. Traditional, flanged steel wheels running on rail tracks provide guidance through switches and act as backup if tyres fail. Most rubber-tyred trains are purpose-built and designed for the system on which they operate. Guided buses are sometimes referred to as 'trams on tyres', and compared to rubber-tyred metros.

View the full Wikipedia page for Rubber-tyred metro
↑ Return to Menu

Tire in the context of Synthetic rubber

A synthetic rubber is an artificial elastomer. They are polymers synthesized from petroleum byproducts. About 32 million tonnes (35 million short tons; 31 million long tons) of rubber is produced annually in the United States, and of that amount two thirds are synthetic. Synthetic rubber, just like natural rubber, has many uses in the automotive industry for tires, door and window profiles, seals such as O-rings and gaskets, hoses, belts, matting, and flooring. They offer a different range of physical and chemical properties which can improve the reliability of a given product or application. Synthetic rubbers are superior to natural rubbers in two major respects: thermal stability, and resistance to oils and related compounds. They are more resistant to oxidizing agents, such as oxygen and ozone which can reduce the life of products like tires.

View the full Wikipedia page for Synthetic rubber
↑ Return to Menu

Tire in the context of Air line

An air line is a tube, or hose, that contains and carries a compressed air supply. In industrial usage, this may be used to inflate car or bicycle tyres or power tools worked by compressed air, for breathing apparatus in hazardous environments and to operate many other pneumatic systems.

Air lines provide compressed air for a wide range of uses and to cater for a variety of uses air lines are manufactured in a range of corrosion-resistant materials. Typically air lines are made with flexible hose or rigid pipe. Air line hoses provide flexibility and mobility for use, whereas a piped air line is more permanent and resistant to damage. For a typical compressed air system, both types of air lines are used in conjunction.

View the full Wikipedia page for Air line
↑ Return to Menu

Tire in the context of Shelf life

Shelf life is the length of time that a commodity may be stored without becoming unfit for use, consumption, or sale. In other words, it might refer to whether a commodity should no longer be on a pantry shelf (unfit for use), or no longer on a supermarket shelf (unfit for sale, but not yet unfit for use). It applies to cosmetics, foods and beverages, medical devices, medicines, explosives, pharmaceutical drugs, chemicals, tyres, batteries, and many other perishable items. In some regions, an advisory best before, mandatory use by or freshness date is required on packaged perishable foods. The concept of expiration date is related but legally distinct in some jurisdictions.

View the full Wikipedia page for Shelf life
↑ Return to Menu

Tire in the context of Carbon black

Carbon black (with subtypes acetylene black, channel black, furnace black, lamp black and thermal black) is a material produced by the incomplete combustion of coal tar, vegetable matter, or petroleum products, including fuel oil, fluid catalytic cracking tar, and ethylene cracking in a limited supply of air. Carbon black is a form of paracrystalline carbon that has a high surface-area-to-volume ratio, albeit lower than that of activated carbon. It is dissimilar to soot in its much higher surface-area-to-volume ratio and significantly lower (negligible and non-bioavailable) polycyclic aromatic hydrocarbon (PAH) content.

Carbon black is used as a colorant and reinforcing filler in tires and other rubber products and as a pigment and wear protection additive in plastics, paints, and ink pigment. It is used in the EU as a food colorant when produced from vegetable matter (E153).

View the full Wikipedia page for Carbon black
↑ Return to Menu

Tire in the context of Roadway noise

Roadway noise is the collective sound energy emanating from motor vehicles. It consists chiefly of road surface, tire, engine/transmission, aerodynamic, and braking elements. Noise of rolling tires driving on pavement is found to be the biggest contributor of highway noise and increases with higher vehicle speeds.

In developed and developing countries, roadway noise contributes a proportionately large share of the total societal noise pollution. In the U.S., it contributes more to environmental noise exposure than any other noise source.

View the full Wikipedia page for Roadway noise
↑ Return to Menu

Tire in the context of Rolling resistance

Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. It is mainly caused by non-elastic effects; that is, not all the energy needed for deformation (or movement) of the wheel, roadbed, etc., is recovered when the pressure is removed. Two forms of this are hysteresis losses (see below), and permanent (plastic) deformation of the object or the surface (e.g. soil). Note that the slippage between the wheel and the surface also results in energy dissipation. Although some researchers have included this term in rolling resistance, some suggest that this dissipation term should be treated separately from rolling resistance because it is due to the applied torque to the wheel and the resultant slip between the wheel and ground, which is called slip loss or slip resistance. In addition, only the so-called slip resistance involves friction, therefore the name "rolling friction" is to an extent a misnomer.

Analogous with sliding friction, rolling resistance is often expressed as a coefficient times the normal force. This coefficient of rolling resistance is generally much smaller than the coefficient of sliding friction.

View the full Wikipedia page for Rolling resistance
↑ Return to Menu

Tire in the context of Rim (wheel)

The rim is the "outer edge of a wheel, holding the tire". It makes up the outer circular design of the wheel on which the inside edge of the tire is mounted on vehicles such as automobiles. For example, on a bicycle wheel the rim is a large hoop attached to the outer ends of the spokes of the wheel that holds the tire and tube. In cross-section, the rim is deep in the center and shallow at the outer edges, thus forming a "U" shape that supports the bead of the tire casing.

In the 1st millennium BC, an iron rim was introduced around the wooden wheels of chariots to improve longevity on rough surfaces.

View the full Wikipedia page for Rim (wheel)
↑ Return to Menu

Tire in the context of Contact patch

The contact patch is the portion of a vehicle's tire that is in actual contact with the road surface. It is commonly used in the discussion of pneumatic (i.e. pressurized) tires, where the term is used strictly to describe the portion of the tire's tread that touches the road surface. The term “footprint” is used almost synonymously. Solid wheels also exhibit a contact patch which is generally smaller than the pneumatic “footprint”.

View the full Wikipedia page for Contact patch
↑ Return to Menu

Tire in the context of Tire tread

The tread of a tire or track refers to the rubber on its circumference that makes contact with the road or the ground. As tires are used, the tread is worn off, limiting its effectiveness in providing traction. A worn tire can often be retreaded.

The word tread is often used casually to refer to the pattern of grooves molded into the rubber, but those grooves are correctly called the tread pattern, or simply the pattern. The grooves are not the tread, they are in the tread. This distinction is especially significant in the case of racing slicks, which have much tread but no grooves.

View the full Wikipedia page for Tire tread
↑ Return to Menu

Tire in the context of Kevlar

Kevlar (para-aramid) is a strong, heat-resistant synthetic fiber, related to other aramids such as Nomex and Technora. Developed by Stephanie Kwolek at DuPont in 1965, the high-strength material was first used commercially in the early 1970s as a replacement for steel in racing tires. It is typically spun into ropes or fabric sheets that can be used as such, or as an ingredient in composite material components.

Kevlar has many applications, ranging from bicycle tires and racing sails to bulletproof vests, due to its high tensile strength-to-weight ratio; by this measure it is five times stronger than steel. It is also used to make modern marching drumheads that withstand high impact, and for mooring lines and other underwater applications.

View the full Wikipedia page for Kevlar
↑ Return to Menu

Tire in the context of Road debris

Road debris, a form of road hazard, is debris that accumulates on or off a road. Road debris includes substances, materials, and objects that are foreign to the normal roadway environment. Debris may be produced by vehicular or non-vehicular sources, although in all cases it is considered litter, a form of solid waste. Debris may tend to collect in areas where vehicles do not drive, such as on the edges (shoulder), around traffic islands, and junctions.

Road spray or tire kickup is road debris (usually liquid water) that has been kicked up, pushed out, or sprayed out from, a tire. In 2004, a AAA Foundation for Traffic Safety study revealed that vehicle-related road debris caused 25,000 accidents and nearly 100 deaths a year.

View the full Wikipedia page for Road debris
↑ Return to Menu