Thunderstorm in the context of 2011 Super Outbreak


Thunderstorm in the context of 2011 Super Outbreak

Thunderstorm Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Thunderstorm in the context of "2011 Super Outbreak"


⭐ Core Definition: Thunderstorm

A thunderstorm, also known as an electrical storm or a lightning storm, is a storm characterized by the presence of lightning and thunder. Relatively weak thunderstorms are sometimes called thundershowers. Thunderstorms occur in cumulonimbus clouds. They are usually accompanied by strong winds and often produce heavy rain and sometimes snow, sleet, or hail, but some thunderstorms can produce little or no precipitation at all. Thunderstorms may line up in a series or become a rainband, known as a squall line. Strong or severe thunderstorms include some of the most dangerous weather phenomena, including large hail, strong winds, and tornadoes. Some of the most persistent severe thunderstorms, known as supercells, rotate as do cyclones. While most thunderstorms move with the mean wind flow through the layer of the troposphere that they occupy, vertical wind shear sometimes causes a deviation in their course at a right angle to the wind shear direction.

Thunderstorms result from the rapid upward movement of warm, moist air, sometimes along a front. However, some kind of cloud forcing, whether it is a front, shortwave trough, or another system is needed for the air to rapidly accelerate upward. As the warm, moist air moves upward, it cools, condenses, and forms a cumulonimbus cloud that can reach heights of over 20 kilometres (12 mi). As the rising air reaches its dew point temperature, water vapor condenses into water droplets or ice, reducing pressure locally within the thunderstorm cell. Any precipitation falls the long distance through the clouds towards the Earth's surface. As the droplets fall, they collide with other droplets and become larger. The falling droplets create a downdraft as it pulls cold air with it, and this cold air spreads out at the Earth's surface, occasionally causing strong winds that are commonly associated with thunderstorms.

↓ Menu
HINT:

In this Dossier

Thunderstorm in the context of Natural disaster

A natural disaster is the very harmful impact on a society or community brought by natural phenomenon or hazard. Some examples of natural hazards include avalanches, droughts, earthquakes, floods, heat waves, landslides - including submarine landslides, tropical cyclones, volcanic activity and wildfires. Additional natural hazards include blizzards, dust storms, firestorms, hails, ice storms, sinkholes, thunderstorms, tornadoes and tsunamis.

A natural disaster can cause loss of life or damage property. It typically causes economic damage. How bad the damage is depends on how well people are prepared for disasters and how strong the buildings, roads, and other structures are.

View the full Wikipedia page for Natural disaster
↑ Return to Menu

Thunderstorm in the context of Wind

Wind is the natural movement of air or other gases relative to a planet's surface. Winds occur on a range of scales, from thunderstorm flows lasting tens of minutes, to local breezes generated by heating of land surfaces and lasting a few hours, to global winds resulting from the difference in absorption of solar energy between the climate zones on Earth. The study of wind is called anemology.

The two main causes of large-scale atmospheric circulation are the differential heating between the equator and the poles, and the rotation of the planet, which is called the Coriolis effect. Within the tropics and subtropics, thermal low circulations over terrain and high plateaus can drive monsoon circulations. In coastal areas the sea breeze/land breeze cycle can define local winds; in areas that have variable terrain, mountain and valley breezes can prevail.

View the full Wikipedia page for Wind
↑ Return to Menu

Thunderstorm in the context of Volcanic lightning

Volcanic lightning is an electrical discharge caused by a volcanic eruption rather than from an ordinary thunderstorm. Volcanic lightning arises from colliding, fragmenting particles of volcanic ash (and sometimes ice), which generate static electricity within the volcanic plume, leading to the name dirty thunderstorm. Moist convection currents and ice formation also drive the eruption plume dynamics and can trigger volcanic lightning. Unlike ordinary thunderstorms, volcanic lightning can also occur when there are no ice crystals in the ash cloud.

The earliest recorded observations of volcanic lightning are from Pliny the Younger, describing the eruption of Mount Vesuvius in 79 AD, "There was a most intense darkness rendered more appalling by the fitful gleam of torches at intervals obscured by the transient blaze of lightning." The first studies of volcanic lightning were also conducted at Mount Vesuvius by Luigi Palmieri who observed the eruptions of 1858, 1861, 1868, and 1872 from the Vesuvius Observatory. These eruptions often included lightning activity.

View the full Wikipedia page for Volcanic lightning
↑ Return to Menu

Thunderstorm in the context of Tropical cyclone

A tropical cyclone is a rapidly rotating storm system with a low-pressure area, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depending on its location and strength, a tropical cyclone is called a hurricane (/ˈhʌrɪkən, -kn/), typhoon (/tˈfn/), tropical storm, cyclonic storm, tropical depression, or simply cyclone. A hurricane is a strong tropical cyclone that occurs in the Atlantic Ocean or northeastern Pacific Ocean. A typhoon is the same thing which occurs in the northwestern Pacific Ocean. In the Indian Ocean and South Pacific, comparable storms are referred to as "tropical cyclones". In modern times, on average around 80 to 90 named tropical cyclones form each year around the world, over half of which develop hurricane-force winds of 65 kn (120 km/h; 75 mph) or more.

Tropical cyclones typically form over large bodies of relatively warm water. They derive their energy through the evaporation of water from the ocean surface, which ultimately condenses into clouds and rain when moist air rises and cools to saturation. This energy source differs from that of mid-latitude cyclonic storms, such as nor'easters and European windstorms, which are powered primarily by horizontal temperature contrasts. Tropical cyclones are typically between 100 and 2,000 km (62 and 1,243 mi) in diameter. The strong rotating winds of a tropical cyclone are a result of the conservation of angular momentum imparted by the Earth's rotation as air flows inwards toward the axis of rotation. As a result, cyclones rarely form within 5° of the equator. South Atlantic tropical cyclones are very rare due to consistently strong wind shear and a weak Intertropical Convergence Zone. In contrast, the African easterly jet and areas of atmospheric instability give rise to cyclones in the Atlantic Ocean and Caribbean Sea.

View the full Wikipedia page for Tropical cyclone
↑ Return to Menu

Thunderstorm in the context of Graupel

Graupel (/ˈɡrpəl/; German: [ˈɡʁaʊpl̩] ), also called soft hail or hominy snow or granular snow or snow pellets, is precipitation that forms when supercooled water droplets in air are collected and freeze on falling snowflakes, forming 2–5 mm (0.08–0.20 in) balls of crisp, opaque rime.

Graupel is distinct from hail and ice pellets in both formation and appearance. However, both hail and graupel are common in thunderstorms with cumulonimbus clouds, though graupel also falls in winter storms, and at higher elevations as well. The METAR code for graupel is GS.

View the full Wikipedia page for Graupel
↑ Return to Menu

Thunderstorm in the context of Cumulonimbus

Cumulonimbus (from Latin cumulus 'swell' and nimbus 'cloud') is a dense, towering, vertical cloud, typically forming from water vapor condensing in the lower troposphere that builds upward carried by powerful buoyant air currents. Above the lower portions of the cumulonimbus the water vapor becomes ice crystals, such as snow and graupel, the interaction of which can lead to hail and to lightning formation, respectively.

When causing thunderstorms, these clouds may be called thunderheads. Cumulonimbus can form alone, in clusters, or along squall lines. These clouds are capable of producing lightning and other dangerous severe weather, such as tornadoes, hazardous winds, and large hailstones. Cumulonimbus progress from overdeveloped cumulus congestus clouds and may further develop as part of a supercell. Cumulonimbus is abbreviated as Cb.

View the full Wikipedia page for Cumulonimbus
↑ Return to Menu

Thunderstorm in the context of Extratropical cyclone

Extratropical cyclones, sometimes called mid-latitude cyclones or wave cyclones, are low-pressure areas which, along with the anticyclones of high-pressure areas, drive the weather over much of the Earth. Extratropical cyclones are capable of producing anything from cloudiness and mild showers to severe hail, thunderstorms, blizzards, and tornadoes. These types of cyclones are defined as large scale (synoptic) low pressure weather systems that occur in the middle latitudes of the Earth. In contrast with tropical cyclones, extratropical cyclones produce rapid changes in temperature and dew point along broad lines, called weather fronts, about the center of the cyclone.

View the full Wikipedia page for Extratropical cyclone
↑ Return to Menu

Thunderstorm in the context of Thundersnow

Thundersnow, also known as a winter thunderstorm or a thundersnow storm, is a thunderstorm in which snow falls as the primary precipitation instead of rain. It is considered a rare phenomenon. It typically falls in regions of strong upward motion within the cold sector of an extratropical cyclone. Thermodynamically, it is not different from any other type of thunderstorm, but the top of the cumulonimbus cloud is usually quite low. In addition to snow, graupel or hail may fall as well. The heavy snowfall tends to muffle the sound of the thunder so that it sounds more like a low rumble than the loud, sharp bang that is heard during regular thunderstorms.

Thundersnow can occur during a normal snowstorm that sustains strong vertical mixing which allows for favorable conditions for lightning and thunder to occur. It can also occur from the lake effect or ocean effect thunderstorm which is produced by cold air passing over relatively warm water; this effect commonly produces snow squalls over the Great Lakes.

View the full Wikipedia page for Thundersnow
↑ Return to Menu

Thunderstorm in the context of Convection

Convection is single or multiphase fluid flow that occurs spontaneously through the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convection is unspecified, convection due to the effects of thermal expansion and buoyancy can be assumed. Convection may also take place in soft solids or mixtures where particles can flow.

Convective flow may be transient (such as when a multiphase mixture of oil and water separates) or steady state (see convection cell). The convection may be due to gravitational, electromagnetic or fictitious body forces. Heat transfer by natural convection plays a role in the structure of Earth's atmosphere, its oceans, and its mantle. Discrete convective cells in the atmosphere can be identified by clouds, with stronger convection resulting in thunderstorms. Natural convection also plays a role in stellar physics. Convection is often categorised or described by the main effect causing the convective flow; for example, thermal convection.

View the full Wikipedia page for Convection
↑ Return to Menu

Thunderstorm in the context of Severe weather

Severe weather is any dangerous meteorological phenomenon with the potential to cause damage, serious social disruption, or loss of life. These vary depending on the latitude, altitude, topography, and atmospheric conditions. High winds, hail, excessive precipitation, and wildfires are forms and effects, as are thunderstorms, downbursts, tornadoes, waterspouts, tropical cyclones, and extratropical cyclones. Regional and seasonal phenomena include blizzards, snowstorms, ice storms, and duststorms.

Severe weather is one type of extreme weather, which includes unexpected, unusual, severe, or unseasonal weather and is by definition rare for that location or time of the year. Due to the effects of climate change, the frequency and intensity of some of the extreme weather events are increasing, for example, heatwaves and droughts.

View the full Wikipedia page for Severe weather
↑ Return to Menu

Thunderstorm in the context of Jebel Aqra

Jebel Aqra (Arabic: جبل الأقرع, romanizedJabal al-ʾAqraʿ, [ˈd͡ʒæbæl al ˈʔaqraʕ]; Turkish: Kel Dağı) is a limestone mountain located on the SyrianTurkish border near the mouth of the Orontes River on the Mediterranean Sea. Rising from a narrow coastal plain, Jebel Aqra is a mariners' landmark that gathers thunderstorms.

The mountain was a cult site in ancient Canaanite religion and continuing through classical antiquity. A mound of ash and debris remains; an archaeological investigation was broken off because of military restrictions imposed due to the mountain's border location.

View the full Wikipedia page for Jebel Aqra
↑ Return to Menu

Thunderstorm in the context of Madden–Julian oscillation

The Madden–Julian oscillation (MJO) is the largest element of the intraseasonal (30- to 90-day) variability in the tropical atmosphere. It was discovered in 1971 by Roland Madden and Paul Julian of the American National Center for Atmospheric Research (NCAR). It is a large-scale coupling between atmospheric circulation and tropical deep atmospheric convection. Unlike a standing pattern like the El Niño–Southern Oscillation (ENSO), the Madden–Julian oscillation is a traveling pattern that propagates eastward, at approximately 4 to 8 m/s (14 to 29 km/h; 9 to 18 mph), through the atmosphere above the warm parts of the Indian and Pacific oceans. This overall circulation pattern manifests itself most clearly as anomalous rainfall.

The Madden–Julian oscillation is characterized by an eastward progression of large regions of both enhanced and suppressed tropical rainfall, observed mainly over the Indian and Pacific Ocean. The anomalous rainfall is usually first evident over the western Indian Ocean, and remains evident as it propagates over the very warm ocean waters of the western and central tropical Pacific. This pattern of tropical rainfall generally becomes nondescript as it moves over the primarily cooler ocean waters of the eastern Pacific, but reappears when passing over the warmer waters over the Pacific Coast of Central America. The pattern may also occasionally reappear at low amplitude over the tropical Atlantic and higher amplitude over the Indian Ocean. The wet phase of enhanced convection and precipitation is followed by a dry phase where thunderstorm activity is suppressed. Each cycle lasts approximately 30–60 days. Because of this pattern, the Madden–Julian oscillation is also known as the 30- to 60-day oscillation, 30- to 60-day wave, or intraseasonal oscillation.

View the full Wikipedia page for Madden–Julian oscillation
↑ Return to Menu

Thunderstorm in the context of Weather front

A weather front is a boundary separating air masses for which several characteristics differ, such as air density, wind, temperature, and humidity. Disturbed and unstable weather due to these differences often arises along the boundary. For instance, cold fronts can bring bands of thunderstorms and cumulonimbus precipitation or be preceded by squall lines, while warm fronts are usually preceded by stratiform precipitation and fog. In summer, subtler humidity gradients known as dry lines can trigger severe weather. Some fronts produce no precipitation and little cloudiness, although there is invariably a wind shift.

Cold fronts generally move from west to east, whereas warm fronts move poleward, although any direction is possible. Occluded fronts are a hybrid merge of the two, and stationary fronts are stalled in their motion. Cold fronts and cold occlusions move faster than warm fronts and warm occlusions because the dense air behind them can lift as well as push the warmer air. Mountains and bodies of water can affect the movement and properties of fronts, other than atmospheric conditions. When the density contrast has diminished between the air masses, for instance after flowing out over a uniformly warm ocean, the front can degenerate into a mere line which separates regions of differing wind velocity known as a shear line. This is most common over the open ocean.

View the full Wikipedia page for Weather front
↑ Return to Menu

Thunderstorm in the context of Rainbands

A rainband is a cloud and precipitation structure associated with an area of rainfall which is significantly elongated. Rainbands in tropical cyclones can be either stratiform or convective and are curved in shape. They consist of showers and thunderstorms, and along with the eyewall and the eye, they make up a tropical cyclone. The extent of rainbands around a tropical cyclone can help determine the cyclone's intensity.

Rainbands spawned near and ahead of cold fronts can be squall lines which are able to produce tornadoes. Rainbands associated with cold fronts can be warped by mountain barriers perpendicular to the front's orientation due to the formation of a low-level barrier jet. Bands of thunderstorms can form with sea breeze and land breeze boundaries, if enough moisture is present. If sea breeze rainbands become active enough just ahead of a cold front, they can mask the location of the cold front itself. Banding within the comma head precipitation pattern of an extratropical cyclone can yield significant amounts of rain or snow. Behind extratropical cyclones, rainbands can form downwind of relative warm bodies of water such as the Great Lakes. If the atmosphere is cold enough, these rainbands can yield heavy snow.

View the full Wikipedia page for Rainbands
↑ Return to Menu