Thomas Digges in the context of Dark night sky paradox


Thomas Digges in the context of Dark night sky paradox

⭐ Core Definition: Thomas Digges

Thomas Digges (/dɪɡz/; c. 1546 – 24 August 1595) was an English mathematician and astronomer. He was the first to expound the Copernican system in English but discarded the notion of a fixed shell of immoveable stars to postulate infinitely many stars at varying distances. He was also first to postulate the "dark night sky paradox".

↓ Menu
HINT:

In this Dossier

Thomas Digges in the context of Static universe

In cosmology, a static universe (also referred to as stationary, infinite, static infinite or static eternal) is a cosmological model in which the universe is both spatially and temporally infinite, and space is neither expanding nor contracting. Such a universe does not have so-called spatial curvature; that is to say that it is 'flat' or Euclidean. A static infinite universe was first proposed by English astronomer Thomas Digges (1546–1595).

In contrast to this model, Albert Einstein proposed a temporally infinite but spatially finite model - static eternal universe - as his preferred cosmology during 1917, in his paper Cosmological Considerations in the General Theory of Relativity.

View the full Wikipedia page for Static universe
↑ Return to Menu

Thomas Digges in the context of Mysterium Cosmographicum

Mysterium Cosmographicum (lit. The Cosmographic Mystery, alternately translated as Cosmic Mystery, The Secret of the World, or some variation) is an astronomy book by the German astronomer Johannes Kepler, published at Tübingen in late 1596 and in a second edition in 1621. Kepler proposed that the distance relationships between the six planets known at that time could be understood in terms of the five Platonic solids, enclosed within a sphere that represented the orbit of Saturn.

This book explains Kepler's cosmological theory, based on the Copernican system, in which the five Platonic solids dictate the structure of the universe and reflect God's plan through geometry. This was virtually the first attempt since Copernicus to say that the theory of heliocentrism is physically true. Thomas Digges had published a defense of Copernicus in an appendix in 1576. According to Kepler's account, he discovered the basis of the model while demonstrating the geometrical relationship between two circles. From this he realized that he had stumbled on a similar ratio to the one between the orbits of Saturn and Jupiter. He wrote, "I believe it was by divine ordinance that I obtained by chance that which previously I could not reach by any pains." But after doing further calculations he realized he could not use two-dimensional polygons to represent all the planets, and instead had to use the five Platonic solids.

View the full Wikipedia page for Mysterium Cosmographicum
↑ Return to Menu