Thioglycolate broth in the context of "Resazurin"

Play Trivia Questions online!

or

Skip to study material about Thioglycolate broth in the context of "Resazurin"

Ad spacer

⭐ Core Definition: Thioglycolate broth

Thioglycolate broth is a multipurpose, enrichment, differential medium used primarily to determine the oxygen requirements of microorganisms. Sodium thioglycolate in the medium consumes oxygen and permits the growth of obligate anaerobes. This, combined with the diffusion of oxygen from the top of the broth, produces a range of oxygen concentrations in the medium along its depth. The oxygen concentration at a given level is indicated by a redox-sensitive dye such as resazurin that turns pink in the presence of oxygen.

This allows the differentiation of obligate aerobes, obligate anaerobes, facultative anaerobes, microaerophiles, and aerotolerant organisms. For example, obligately anaerobic Clostridium species will be seen growing only in the bottom of the test tube.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Thioglycolate broth in the context of Aerobe

An aerobic organism or aerobe is an organism that can survive and grow in an oxygenated environment. The ability to exhibit aerobic respiration may yield benefits to the aerobic organism, as aerobic respiration yields more energy than anaerobic respiration. Energy production of the cell involves the synthesis of ATP by an enzyme called ATP synthase. In aerobic respiration, ATP synthase is coupled with an electron transport chain in which oxygen acts as a terminal electron acceptor. In July 2020, marine biologists reported that aerobic microorganisms (mainly), in "quasi-suspended animation", were found in organically poor sediments, up to 101.5 million years old, 250 feet below the seafloor in the South Pacific Gyre (SPG) ("the deadest spot in the ocean"), and could be the longest-living life forms ever found.

↑ Return to Menu

Thioglycolate broth in the context of Facultative anaerobes

A facultative anaerobic organism is an organism that makes ATP by aerobic respiration if oxygen is present, but is capable of switching to fermentation if oxygen is absent.

Some examples of facultatively anaerobic bacteria are Staphylococcus spp., Escherichia coli, Salmonella, Listeria spp., Shewanella oneidensis and Yersinia pestis. Certain eukaryotes are also facultative anaerobes, including pupfish, fungi such as Saccharomyces cerevisiae and many aquatic invertebrates such as nereid polychaetes.

↑ Return to Menu