Tetrapoda in the context of "Limbless vertebrate"

Play Trivia Questions online!

or

Skip to study material about Tetrapoda in the context of "Limbless vertebrate"

Ad spacer

⭐ Core Definition: Tetrapoda

A tetrapod (/ˈtɛtrəˌpɒd/; from Ancient Greek τετρα- (tetra-) 'four' and πούς (poús) 'foot') is any vertebrate animal of the clade Tetrapoda (/tɛˈtræpədə/). Tetrapods include all extant and extinct amphibians and amniotes, with the latter in turn evolving into two major clades, the sauropsids (reptiles, including dinosaurs and therefore birds) and synapsids (extinct "pelycosaurs", therapsids and all extant mammals, including humans). Hox gene mutations have resulted in some tetrapods becoming limbless (snakes, legless lizards, and caecilians) or two-limbed (cetaceans, sirenians, some lizards, kiwis, and the extinct moa and elephant birds). Nevertheless, they still qualify as tetrapods through their ancestry, and some retain a pair of vestigial spurs that are remnants of the hindlimbs.

Tetrapods evolved from a group of semiaquatic animals within the tetrapodomorphs which, in turn, evolved from ancient lobe-finned fish (sarcopterygians) around 390 million years ago in the Middle Devonian period. Early tetrapodomorphs were transitional between lobe-finned fishes and true four-limbed tetrapods, though most still fit the body plan expected of other lobe-finned fishes. The oldest fossils of four-limbed vertebrates (tetrapods in the broad sense of the word) are trackways from the Middle Devonian, and body fossils became common near the end of the Late Devonian, around 370–360 million years ago. These Devonian species all belonged to the tetrapod stem group, meaning that they did not belong to any modern tetrapod group.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Tetrapoda in the context of Evolution of tetrapods

The evolution of tetrapods began about 400 million years ago in the Devonian Period with the earliest tetrapods evolved from lobe-finned fishes. Tetrapods (under the apomorphy-based definition used on this page) are categorized as animals in the biological superclass Tetrapoda, which includes all living and extinct amphibians, reptiles, birds, and mammals. While most species today are terrestrial, little evidence supports the idea that any of the earliest tetrapods could move about on land, as their limbs could not have held their midsections off the ground and the known trackways do not indicate they dragged their bellies around. Presumably, the tracks were made by animals walking along the bottoms of shallow bodies of water. The specific aquatic ancestors of the tetrapods, and the process by which land colonization occurred, remain unclear. They are areas of active research and debate among palaeontologists at present.

Most amphibians today remain semiaquatic, living the first stage of their lives as fish-like tadpoles. Several groups of tetrapods, such as the snakes and cetaceans, have lost some or all of their limbs. In addition, many tetrapods have returned to partially aquatic or fully aquatic lives throughout the history of the group (modern examples of fully aquatic tetrapods include cetaceans and sirenians). The first returns to an aquatic lifestyle may have occurred as early as the Carboniferous Period whereas other returns occurred as recently as the Cenozoic, as in cetaceans, pinnipeds, and several modern amphibians.

↑ Return to Menu

Tetrapoda in the context of Rhipidistia

Rhipidistia, also known as Dipnotetrapodomorpha, is a clade of lobe-finned fishes which includes the tetrapods and lungfishes. Rhipidistia formerly referred to a subgroup of Sarcopterygii consisting of the Porolepiformes and Osteolepiformes, a definition that is now obsolete. However, as cladistic understanding of the vertebrates has improved over the last few decades, a monophyletic Rhipidistia is now understood to include the whole of Tetrapoda and the lungfishes.

Rhipidistia includes Porolepiformes and Dipnoi. Extensive fossilization of lungfishes has contributed to many evolutionary studies of this group. Evolution of autostylic jaw suspension, in which the palatoquadrate bone fuses to the cranium, and the lymph pumping "lymph heart" (later lost in mammals and flying birds), are unique to this group. Another feature shared by lungfish and tetrapods is the divided atrium, though it evolved convergently.

↑ Return to Menu