Tetracyclines in the context of Chemical modification


Tetracyclines in the context of Chemical modification

Tetracyclines Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Tetracyclines in the context of "Chemical modification"


⭐ Core Definition: Tetracyclines

Tetracyclines are a group of broad-spectrum antibiotic compounds that have a common basic structure and are either isolated directly from several species of Streptomyces bacteria or produced semi-synthetically from those isolated compounds. Tetracycline molecules comprise a linear fused tetracyclic nucleus (rings designated A, B, C and D) to which a variety of functional groups are attached. Tetracyclines are named after their four ("tetra-") hydrocarbon rings ("-cycl-") derivation ("-ine"). They are defined as a subclass of polyketides, having an octahydrotetracene-2-carboxamide skeleton and are known as derivatives of polycyclic naphthacene carboxamide.While all tetracyclines have a common structure, they differ from each other by the presence of chloro, methyl, and hydroxyl groups. These modifications do not change their broad antibacterial activity, but do affect pharmacological properties such as half-life and binding to proteins in serum.

Tetracyclines were discovered in the 1940s and exhibited activity against a wide range of microorganisms including gram-positive and gram-negative bacteria, chlamydiota, mycoplasmatota, rickettsiae, and protozoan parasites. Tetracycline itself was discovered later than chlortetracycline and oxytetracycline but is still considered as the parent compound for nomenclature purposes.Tetracyclines are among the cheapest classes of antibiotics available and have been used extensively in prophylaxis and in treatment of human and animal infections, as well as at subtherapeutic levels in animal feed as growth promoters.

↓ Menu
HINT:

In this Dossier

Tetracyclines in the context of Phototoxicity

Phototoxicity, also called photoirritation, is a chemically induced skin irritation, requiring light, that does not involve the immune system. It is a type of photosensitivity.

The skin response resembles an exaggerated sunburn. The involved chemical may enter into the skin by topical administration, or it may reach the skin via systemic circulation following ingestion or parenteral administration. The chemical needs to be "photoactive," which means that when it absorbs light, the absorbed energy produces molecular changes that cause toxicity. Many synthetic compounds, including drug substances like tetracyclines or fluoroquinolones, are known to cause these effects. Surface contact with some such chemicals causes photodermatitis, and many plants cause phytophotodermatitis. Light-induced toxicity is a common phenomenon in humans; however, it also occurs in other animals.

View the full Wikipedia page for Phototoxicity
↑ Return to Menu