Tesla (unit) in the context of Mechanical engineer


Tesla (unit) in the context of Mechanical engineer

Tesla (unit) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Tesla (unit) in the context of "Mechanical engineer"


⭐ Core Definition: Tesla (unit)

The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI).

One tesla is equal to one weber per square metre. The unit was announced during the General Conference on Weights and Measures in 1960 and is named in honour of Serbian-American electrical and mechanical engineer Nikola Tesla, upon the proposal of the Slovenian electrical engineer France Avčin.

↓ Menu
HINT:

In this Dossier

Tesla (unit) in the context of Metric unit

The metric system is a system of measurement that standardises a set of base units and a nomenclature for describing relatively large and small quantities via decimal-based multiplicative unit prefixes. Though the rules governing the metric system have changed over time, the modern definition, the International System of Units (SI), defines the metric prefixes and seven base units: metre (m), kilogram (kg), second (s), ampere (A), kelvin (K), mole (mol), and candela (cd).

An SI derived unit is a named combination of base units such as hertz (cycles per second), newton (kg⋅m/s), and tesla (1 kg⋅s⋅A) and in the case of Celsius a shifted scale from Kelvin. Certain units have been officially accepted for use with the SI. Some of these are decimalised, like the litre and electronvolt, and are considered "metric". Others, like the astronomical unit are not. Ancient non-metric but SI-accepted multiples of time, minute and hour, are base 60 (sexagesimal). Similarly, the angular measure degree and submultiples, arcminute, and arcsecond, are also sexagesimal and SI-accepted.

View the full Wikipedia page for Metric unit
↑ Return to Menu

Tesla (unit) in the context of Magnetic field of the Moon

The magnetic field of the Moon is very weak in comparison to that of the Earth; the major difference is the Moon does not have a dipolar magnetic field currently (as would be generated by a geodynamo in its core), so that the magnetization present is varied (see picture) and its origin is almost entirely crustal in location; so it's difficult to compare as a percentage to Earth. But, one experiment discovered that lunar rocks formed 1 - 2.5 billion years ago were created in a field of about 5 microtesla (μT), compared to present day Earth's 50 μT. During the Apollo program several magnetic field strength readings were taken with readings ranging from a low of 6γ (6nT) at the Apollo 15 site to a maximum of 313γ (0.31μT) at the Apollo 16 site, note these readings were recorded in gammas(γ) a now outdated unit of magnetic flux density equivalent to 1nT.

One hypothesis holds that the crustal magnetizations were acquired early in lunar history when a geodynamo was still operating. An analysis of magnetized Moon rocks brought to Earth by Apollo astronauts showed that the Moon must have had a strong (above 110 μT) magnetic field at least 4.25 billion years ago, which then fell to 20 μT level in the 3.6 - 3.1 billion years BP period. The small size of the lunar core, however, is a potential obstacle to promoting that hypothesis to the status of theory. However, single silicate grains with magnetic inclusions from Apollo rocks formed at 3.9, 3.6, 3.3, and 3.2 billion years ago have been shown to be capable of recording strong magnetic fields but do not. This supports the alternative hypothesis that the Moon never had a long-lasting core dynamo, consistent with the lack of energy needed to sustain a field.

View the full Wikipedia page for Magnetic field of the Moon
↑ Return to Menu

Tesla (unit) in the context of Nuclear magnetic resonance (NMR) spectroscopy

Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field. This re-orientation occurs with absorption of electromagnetic radiation in the radio frequency region from roughly 4 to 900 MHz, which depends on the isotopic nature of the nucleus and increases proportionally to the strength of the external magnetic field. Notably, the resonance frequency of each NMR-active nucleus depends on its chemical environment. As a result, NMR spectra provide information about individual functional groups present in the sample, as well as about connections between nearby nuclei in the same molecule. As the NMR spectra are unique or highly characteristic to individual compounds and functional groups, NMR spectroscopy is one of the most important methods to identify molecular structures, particularly of organic compounds.

The principle of NMR usually involves three sequential steps:

View the full Wikipedia page for Nuclear magnetic resonance (NMR) spectroscopy
↑ Return to Menu

Tesla (unit) in the context of Magnetar

A magnetar is a type of neutron star with an extremely powerful magnetic field (~10 to 10 T, ~10 to 10 G). The magnetic-field decay powers the emission of high-energy electromagnetic radiation, particularly X-rays and gamma rays.

The existence of magnetars was proposed in 1992 by Robert Duncan and Christopher Thompson following earlier work by Jonathan I. Katz on the Soft Gamma Repeater SGR 0525-66, then called a gamma-ray burst.

View the full Wikipedia page for Magnetar
↑ Return to Menu

Tesla (unit) in the context of Physics of magnetic resonance imaging

Magnetic resonance imaging (MRI) is a medical imaging technique mostly used in radiology and nuclear medicine in order to investigate the anatomy and physiology of the body, and to detect pathologies including tumors, inflammation, neurological conditions such as stroke, disorders of muscles and joints, and abnormalities in the heart and blood vessels among other things. Contrast agents may be injected intravenously or into a joint to enhance the image and facilitate diagnosis. Unlike CT and X-ray, MRI uses no ionizing radiation and is, therefore, a safe procedure suitable for diagnosis in children and repeated runs. Patients with specific non-ferromagnetic metal implants, cochlear implants, and cardiac pacemakers nowadays may also have an MRI in spite of effects of the strong magnetic fields. This does not apply on older devices, and details for medical professionals are provided by the device's manufacturer.

Certain atomic nuclei are able to absorb and emit radio frequency energy when placed in an external magnetic field. In clinical and research MRI, hydrogen atoms are most often used to generate a detectable radio-frequency signal that is received by antennas close to the anatomy being examined. Hydrogen atoms are naturally abundant in people and other biological organisms, particularly in water and fat. For this reason, most MRI scans essentially map the location of water and fat in the body. Pulses of radio waves excite the nuclear spin energy transition, and magnetic field gradients localize the signal in space. By varying the parameters of the pulse sequence, different contrasts may be generated between tissues based on the relaxation properties of the hydrogen atoms therein.

View the full Wikipedia page for Physics of magnetic resonance imaging
↑ Return to Menu

Tesla (unit) in the context of Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca. 20 tesla, the frequency is similar to VHF and UHF television broadcasts (60–1000 MHz). NMR results from specific magnetic properties of certain atomic nuclei. High-resolution nuclear magnetic resonance spectroscopy is widely used to determine the structure of organic molecules in solution and study molecular physics and crystals as well as non-crystalline materials. NMR is also routinely used in advanced medical imaging techniques, such as in magnetic resonance imaging (MRI). The original application of NMR to condensed matter physics is nowadays mostly devoted to strongly correlated electron systems. It reveals large many-body couplings by fast broadband detection and should not be confused with solid state NMR, which aims at removing the effect of the same couplings by Magic Angle Spinning techniques.

The most commonly used nuclei are
H
and
C
, although isotopes of many other elements, such as
F
,
P
, and
Si
, can be studied by high-field NMR spectroscopy as well. In order to interact with the magnetic field in the spectrometer, the nucleus must have an intrinsic angular momentum and nuclear magnetic dipole moment. This occurs when an isotope has a nonzero nuclear spin, meaning an odd number of protons and/or neutrons (see Isotope). Nuclides with even numbers of both have a total spin of zero and are therefore not NMR-active.

View the full Wikipedia page for Nuclear magnetic resonance
↑ Return to Menu

Tesla (unit) in the context of Vacuum permeability

The vacuum magnetic permeability (variously vacuum permeability, permeability of free space, permeability of vacuum, magnetic constant) is the magnetic permeability in a classical vacuum. It is a physical constant, conventionally written as μ0 (pronounced "mu nought" or "mu zero"), approximately equal to 4π × 10 H/m (by the former definition of the ampere). It quantifies the strength of the magnetic field induced by an electric current. Expressed in terms of SI base units, it has the unit kgms⋅A. It can be also expressed in terms of SI derived units, N⋅A, H·m, or T·m·A, which are all equivalent.

Since the revision of the SI in 2019 (when the values of e and h were fixed as defined quantities), μ0 is an experimentally determined constant, its value being proportional to the dimensionless fine-structure constant, which is known to a relative uncertainty of 1.6×10, with no other dependencies with experimental uncertainty. Its value in SI units as recommended by CODATA is:

View the full Wikipedia page for Vacuum permeability
↑ Return to Menu

Tesla (unit) in the context of Rare-earth magnet

A rare-earth magnet is a strong permanent magnet made from alloys of rare-earth elements. Developed in the 1970s and 1980s, rare-earth magnets are the strongest type of permanent magnets made, producing significantly stronger magnetic fields than other types such as ferrite or alnico magnets. The magnetic field typically produced by rare-earth magnets can exceed 1.2 teslas, whereas ferrite or ceramic magnets typically exhibit fields of 0.5 to 1 tesla.

There are two types: neodymium magnets and samarium–cobalt magnets. Rare-earth magnets are extremely brittle and are vulnerable to corrosion, so they are usually plated or coated to protect them from breaking, chipping, or crumbling into powder.

View the full Wikipedia page for Rare-earth magnet
↑ Return to Menu

Tesla (unit) in the context of SQUID

A SQUID (superconducting quantum interference device) is a very sensitive magnetometer used to measure extremely weak magnetic fields, based on superconducting loops containing Josephson junctions.

SQUIDs are sensitive enough to measure fields as low as 5×10 T with a few days of averaged measurements. Their noise levels are as low as 3 fHz. For comparison, a typical refrigerator magnet produces 0.01 tesla (10 T), and some processes in animals produce very small magnetic fields between 10 T and 10 T. SERF atomic magnetometers, invented in the early 2000s are potentially more sensitive and do not require cryogenic refrigeration but are orders of magnitude larger in size (~1 cm) and must be operated in a near-zero magnetic field.

View the full Wikipedia page for SQUID
↑ Return to Menu

Tesla (unit) in the context of Weber (unit)

In physics, the weber (/ˈvb-, ˈwɛb.ər/ VAY-, WEH-bər; symbol: Wb) is the unit of magnetic flux in the International System of Units (SI). The unit is derived (through Faraday's law of induction) from the relationship 1 Wb = 1 V⋅s (volt-second). A magnetic flux density of 1 Wb/m (one weber per square metre) is one tesla.

The weber is named after the German physicist Wilhelm Eduard Weber (1804–1891).

View the full Wikipedia page for Weber (unit)
↑ Return to Menu

Tesla (unit) in the context of Magnetic constant

The vacuum magnetic permeability (variously vacuum permeability, permeability of free space, permeability of vacuum, magnetic constant) is the magnetic permeability in a classical vacuum. It is a physical constant, conventionally written as μ0 (pronounced "mu nought" or "mu zero"), approximately equal to 4π × 10 H/m (by the former definition of the ampere). It quantifies the strength of the magnetic field induced by an electric current. Expressed in terms of SI base units, it has the unit kgms⋅A. It can be also expressed in terms of SI derived units, N⋅A, H·m, or T·m·A, which are all equivalent.

Since the revision of the SI in 2019 (when the values of e and h were fixed as defined quantities), μ0 is an experimentally determined constant with its value proportional to the dimensionless fine-structure constant, which is known to a relative uncertainty of 1.6×10, with no other dependencies with experimental uncertainty. Its value in SI units as recommended by CODATA is:

View the full Wikipedia page for Magnetic constant
↑ Return to Menu

Tesla (unit) in the context of Gauss (unit)

The gauss (symbol: G, sometimes Gs) is a unit of measurement of magnetic induction, also known as magnetic flux density. The unit is part of the Gaussian system of units, which inherited it from the older centimetre–gram–second electromagnetic units (CGS-EMU) system. It was named after the German mathematician and physicist Carl Friedrich Gauss in 1936. One gauss is defined as one maxwell per square centimetre.

As the centimetre–gram–second system of units (cgs system) has been superseded by the International System of Units (SI), the use of the gauss has been deprecated by the standards bodies, but is still regularly used in various subfields of science, and preferred in astrophysics. The SI unit for magnetic flux density is the tesla (symbol T), which corresponds to 10,000gauss.

View the full Wikipedia page for Gauss (unit)
↑ Return to Menu