Tauopathy in the context of Neurofibrillary tangle


Tauopathy in the context of Neurofibrillary tangle

Tauopathy Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Tauopathy in the context of "Neurofibrillary tangle"


⭐ Core Definition: Tauopathy

Tauopathies are a class of heterogeneous neurodegenerative diseases characterized by the neuronal and glial aggregation of abnormal tau protein. Hyperphosphorylation of tau proteins causes them to dissociate from microtubules and form insoluble aggregates called neurofibrillary tangles. Various neuropathologic phenotypes have been described based on the anatomical regions and cell types involved as well as the unique tau isoforms making up these deposits. The designation 'primary tauopathy' is assigned to disorders where the predominant feature is the deposition of tau protein. Alternatively, diseases exhibiting tau pathologies attributed to different and varied underlying causes are termed 'secondary tauopathies'. Some neuropathologic phenotypes involving tau protein are Alzheimer's disease, frontotemporal dementia, progressive supranuclear palsy, and corticobasal degeneration. Recent literature has shown that tauopathies can have different clinical and pathological presentations depending on the individual. This rejects the previously held idea that individual tauopathies could be linked to specific diseases.

↓ Menu
HINT:

In this Dossier

Tauopathy in the context of Neurodegenerative disease

A neurodegenerative disease is caused by the progressive loss of neurons, in the process known as neurodegeneration. Neuronal damage may also ultimately result in their death. Neurodegenerative diseases include amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, multiple system atrophy, tauopathies, and prion diseases. Neurodegeneration can be found in the brain at many different levels of neuronal circuitry, ranging from molecular to systemic. Because there is no known way to reverse the progressive degeneration of neurons, these diseases are considered to be incurable; however research has shown that the two major contributing factors to neurodegeneration are oxidative stress and inflammation. Biomedical research has revealed many similarities between these diseases at the subcellular level, including atypical protein assemblies (like proteinopathy) and induced cell death. These similarities suggest that therapeutic advances against one neurodegenerative disease might ameliorate other diseases as well.

Within neurodegenerative diseases, it is estimated that 55 million people worldwide had dementia in 2019, and that by 2050 this figure will increase to 139 million people.

View the full Wikipedia page for Neurodegenerative disease
↑ Return to Menu

Tauopathy in the context of Neurological disorder

A neurological disorder is any disorder of the nervous system. Structural, biochemical or electrical abnormalities in the brain, spinal cord, or other nerves can result in a range of symptoms. Examples of symptoms include paralysis, muscle weakness, poor coordination, loss of sensation, seizures, confusion, pain, tauopathies, and altered levels of consciousness. There are many recognized neurological disorders; some are relatively common, but many are rare.

Interventions for neurological disorders include preventive measures, lifestyle changes, physiotherapy or other therapy, neurorehabilitation, pain management, medication, operations performed by neurosurgeons, or a specific diet. The World Health Organization estimated in 2006 that neurological disorders and their sequelae (direct consequences) affect as many as one billion people worldwide and identified health inequalities and social stigma/discrimination as major factors contributing to the associated disability and their impact.

View the full Wikipedia page for Neurological disorder
↑ Return to Menu

Tauopathy in the context of Neurofibrillary tangles

Neurofibrillary tangles (NFTs) are intracellular aggregates of hyperphosphorylated tau protein that are most commonly known as a primary biomarker of Alzheimer's disease. NFTs also are present in numerous other diseases known collectively as tauopathies. Little is known about their exact relationship to the different pathologies, but it is typically recognized that tauopathy is an important factor in the pathogenesis of several neurodegenerative diseases.

NFTs consist primarily of a misfolded, hyperphosphorylated microtubule-associated protein known as tau, which abnormally polymerizes into insoluble filaments within cells. Under the electron microscope, these polymers of tau are seen to take two basic forms: paired helical filaments (PHFs) and straight filaments. These basic types of tau filaments can vary structurally, especially in different tauopathies. The filaments bundle together to form the neurofibrillary tangles that are evident under the light microscope. Classical NFTs are located within the neuronal cell body, although it is now recognized that abnormal, filamentous tau occurs also in neuronal dendrites and axons (referred to as neuropil threads) and the dystrophic (abnormal) neurites that surround neuritic Abeta plaques. Mature NFTs in cell bodies can have a torch-like or globose appearance, depending on the type of neuron involved. When tangle-containing neurons die, the tangles can remain in the neuropil as extracellular "ghost tangles".

View the full Wikipedia page for Neurofibrillary tangles
↑ Return to Menu

Tauopathy in the context of Lewy bodies

Lewy bodies are inclusion bodies – abnormal aggregations of protein – that develop inside neurons affected by Parkinson's disease, the Lewy body dementias (Parkinson's disease dementia and dementia with Lewy bodies (DLB)), and in several other disorders such as multiple system atrophy. The defining proteinaceous component of Lewy bodies is alpha-synuclein (α-synuclein), which aggregates to form Lewy bodies within neuronal cell bodies, and Lewy neurites in neuronal processes (axons or dendrites). In some disorders, alpha-synuclein also forms aggregates in glial cells that are referred to as 'glial cytoplasmic inclusions'; together, diseases involving Lewy bodies, Lewy neurites and glial cytoplasmic inclusions are called 'synucleinopathies'.

Lewy bodies appear as spherical masses in the neuronal cytoplasm that can displace other cellular components such as the nucleus and neuromelanin. A given neuron may contain one or more Lewy bodies. There are two main kinds of Lewy bodies – classical (brainstem-type) and cortical-type. Classical Lewy bodies occur most commonly in pigmented neurons of the brainstem, such as the substantia nigra and locus coeruleus, although they are not restricted to pigmented neurons. They are strongly eosinophilic structures ranging from 8-30 microns in diameter, and when viewed with a light microscope they are seen to consist of a dense core that is often surrounded by a pale shell. Electron microscopic analyses found that the core consists of a compact mass of haphazard filaments and various particles surrounded by a diffuse corona of radiating filaments. In contrast, cortical-type Lewy bodies are smaller, only faintly eosinophilic, and devoid of a surrounding halo with radial filaments. Cortical-type Lewy bodies occur in multiple regions of the cortex and in the amygdala. Cortical Lewy bodies are a distinguishing feature of dementia with Lewy bodies, but they may occasionally be seen in ballooned neurons characteristic of behavioural variant frontotemporal dementia and corticobasal degeneration, as well as in patients with other tauopathies.

View the full Wikipedia page for Lewy bodies
↑ Return to Menu