Tau (particle) in the context of "Subatomic"

Play Trivia Questions online!

or

Skip to study material about Tau (particle) in the context of "Subatomic"

Ad spacer

⭐ Core Definition: Tau (particle)

The tau (τ), also called the tau lepton, tau particle or tauon, is an elementary particle similar to the electron, with negative electric charge and a spin of 1/2. Like the electron, the muon, and the three neutrinos, the tau is a lepton, and like all elementary particles with half-integer spin, the tau has a corresponding antiparticle of opposite charge but equal mass and spin. In the tau's case, this is the "antitau" (also called the positive tau). Tau particles are denoted by the symbol τ and the antitaus by τ.

Tau leptons have a lifetime of 2.9×10 s and a mass of 1776.9 MeV/c (compared to 105.66 MeV/c for muons and 0.511 MeV/c for electrons). Because their interactions are very similar to those of the electron, a tau can be thought of as a much heavier version of the electron. Due to their greater mass, tau particles do not emit as much bremsstrahlung (braking radiation) as electrons; consequently they are potentially much more highly penetrating than electrons.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Tau (particle) in the context of Subatomic particle

In physics, a subatomic particle is a particle smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a baryon, like a proton or a neutron, composed of three quarks; or a meson, composed of two quarks), or an elementary particle, which is not composed of other particles (for example, quarks; or electrons, muons, and tau particles, which are called leptons). Particle physics and nuclear physics study these particles and how they interact. Most force-carrying particles like photons or gluons are called bosons and, although they have quanta of energy, do not have rest mass or discrete diameters (other than pure energy wavelength) and are unlike the former particles that have rest mass and cannot overlap or combine which are called fermions. The W and Z bosons, however, are an exception to this rule and have relatively large rest masses at approximately 80 GeV/c and 90 GeV/c respectively.

↑ Return to Menu

Tau (particle) in the context of Lepton

In particle physics, a lepton is an elementary particle of half-integer spin (spin 1/2) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), including the electron, muon, and tauon, and neutral leptons, better known as neutrinos. Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron.

There are six types of leptons, known as flavours, grouped in three generations. The first-generation leptons, also called electronic leptons, comprise the electron (e
) and the electron neutrino (ν
e
); the second are the muonic leptons, comprising the muon (μ
) and the muon neutrino (ν
μ
); and the third are the tauonic leptons, comprising the tau (τ
) and the tau neutrino (ν
τ
). Electrons have the least mass of all the charged leptons. The heavier muons and taus will rapidly change into electrons and neutrinos through a process of particle decay: the transformation from a higher mass state to a lower mass state. Thus electrons are stable and the most common charged lepton in the universe, whereas muons and taus can only be produced in high-energy collisions (such as those involving cosmic rays and those carried out in particle accelerators).

↑ Return to Menu

Tau (particle) in the context of Tau neutrino

The tau neutrino or tauon neutrino is an elementary particle which has the symbol ν
τ
and zero electric charge. Together with the tau (τ), it forms the third generation of leptons, hence the name tau neutrino. Its existence was immediately implied after the tau particle was detected in a series of experiments between 1974 and 1977 by Martin Lewis Perl with his colleagues at the SLACLBL group. The discovery of the tau neutrino was announced in July 2000 by the DONUT collaboration (Direct Observation of the Nu Tau). In 2024, the IceCube Neutrino Observatory published findings of seven astrophysical tau neutrino candidates.

As of 2022 they have been called the "least studied particle in the standard model" because of their low cross section, difficulty of production, and difficulty to distinguish from other neutrino flavors. One review argues they are worth studying more in order to finally completely measure their properties, test our knowledge of neutrino mixing, probe possible anomalies, and make full use of experiments that are sensitive to tau neutrinos in any case.

↑ Return to Menu