Systems geology in the context of Cyberinfrastructure


Systems geology in the context of Cyberinfrastructure

Systems geology Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Systems geology in the context of "Cyberinfrastructure"


⭐ Core Definition: Systems geology

Systems geology emphasizes the nature of geology as a system – that is, as a set of interacting parts that function as a whole. The systems approach involves study of the linkages or interfaces between the component objects and processes at all levels of detail in order to gain a more comprehensive understanding of the solid Earth. A long-term objective is to provide computational support throughout the cycles of investigation, integrating observation and experiment with modeling and theory, each reinforcing the other. The overall complexity suggests that systems geology must be based on the wider emerging cyberinfrastructure, and should aim to harmonize geological information with Earth system science within the context of the e-science vision of a comprehensive global knowledge system (see Linked Data, Semantic Web).

↓ Menu
HINT:

In this Dossier

Systems geology in the context of Earth system science

Earth system science (ESS) is the application of systems science to the Earth. In particular, it considers interactions and 'feedbacks', through material and energy fluxes, between the Earth's sub-systems' cycles, processes and "spheres"—atmosphere, hydrosphere, cryosphere, geosphere, pedosphere, lithosphere, biosphere, and even the magnetosphere—as well as the impact of human societies on these components. At its broadest scale, Earth system science brings together researchers across both the natural and social sciences, from fields including ecology, economics, geography, geology, glaciology, meteorology, oceanography, climatology, paleontology, sociology, and space science. Like the broader subject of systems science, Earth system science assumes a holistic view of the dynamic interaction between the Earth's spheres and their many constituent subsystems fluxes and processes, the resulting spatial organization and time evolution of these systems, and their variability, stability and instability. Subsets of Earth System science include systems geology and systems ecology, and many aspects of Earth System science are fundamental to the subjects of physical geography and climate science.

View the full Wikipedia page for Earth system science
↑ Return to Menu