System resource in the context of Scheduling (computing)


System resource in the context of Scheduling (computing)

System resource Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about System resource in the context of "Scheduling (computing)"


⭐ Core Definition: System resource

A computer system resource is any hardware or software aspect of limited availability that is accessible to a computer system. Like any resource, computer system resources can be exhausted, and issues arise due to scarcity.

Resource management, a key aspect of designing hardware and software, includes preventing resource leaks (not releasing a resource done with it) and handling resource contention (when multiple processes want to access the same resource). Computing resources are used in cloud computing to provide services through networks.

↓ Menu
HINT:

In this Dossier

System resource in the context of Library (computing)

In computing, a library is a collection of resources that can be used during software development to implement a computer program. Commonly, a library consists of executable code such as compiled functions and classes, or a library can be a collection of source code. A resource library may contain data such as images and text.

A library can be used by multiple, independent consumers (programs and other libraries). This differs from resources defined in a program which can usually only be used by that program. When a consumer uses a library resource, it gains the value of the library without having to implement it itself. Libraries encourage software reuse in a modular fashion. Libraries can use other libraries resulting in a hierarchy of libraries in a program.

View the full Wikipedia page for Library (computing)
↑ Return to Menu

System resource in the context of System administrator

An IT administrator, system administrator, sysadmin, or admin is a person who is responsible for the upkeep, configuration, and reliable operation of computer systems, especially multi-user computers, such as servers. The system administrator seeks to ensure that the uptime, performance, resources, and security of the computers they manage meet the needs of the users, without exceeding a set budget when doing so.

To meet these needs, a system administrator may acquire, install, or upgrade computer components and software; provide routine automation; maintain security policies; troubleshoot; train or supervise staff; or offer technical support for projects.

View the full Wikipedia page for System administrator
↑ Return to Menu

System resource in the context of Server (computing)

A server is a computer that provides information to other computers called "clients" on a computer network. This architecture is called the client–server model. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients or performing computations for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.

Client–server systems are most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgment. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.

View the full Wikipedia page for Server (computing)
↑ Return to Menu

System resource in the context of Scheduler (computing)

In computing, scheduling is the action of assigning resources to perform tasks. The resources may be processors, network links or expansion cards. The tasks may be threads, processes or data flows.

The scheduling activity is carried out by a mechanism called a scheduler. Schedulers are often designed so as to keep all computer resources busy (as in load balancing), allow multiple users to share system resources effectively, or to achieve a target quality-of-service.

View the full Wikipedia page for Scheduler (computing)
↑ Return to Menu

System resource in the context of Worst-case complexity

In computer science (specifically computational complexity theory), the worst-case complexity measures the resources (e.g. running time, memory) that an algorithm requires given an input of arbitrary size (commonly denoted as n in asymptotic notation). It gives an upper bound on the resources required by the algorithm.

In the case of running time, the worst-case time complexity indicates the longest running time performed by an algorithm given any input of size n, and thus guarantees that the algorithm will finish in the indicated period of time. The order of growth (e.g. linear, logarithmic) of the worst-case complexity is commonly used to compare the efficiency of two algorithms.

View the full Wikipedia page for Worst-case complexity
↑ Return to Menu

System resource in the context of Deadlock (computer science)

In concurrent computing, deadlock is any situation in which no member of some group of entities can proceed because each waits for another member, including itself, to take action, such as sending a message or, more commonly, releasing a lock. Deadlocks are a common problem in multiprocessing systems, parallel computing, and distributed systems, because in these contexts systems often use software or hardware locks to arbitrate shared resources and implement process synchronization.

In an operating system, a deadlock occurs when a process or thread enters a waiting state because a requested system resource is held by another waiting process, which in turn is waiting for another resource held by another waiting process. If a process remains indefinitely unable to change its state because resources requested by it are being used by another process that itself is waiting, then the system is said to be in a deadlock.

View the full Wikipedia page for Deadlock (computer science)
↑ Return to Menu

System resource in the context of Grid computing

Grid computing is the use of widely distributed computer resources to reach a common goal. A computing grid can be thought of as a distributed system with non-interactive workloads that involve many files. Grid computing is distinguished from conventional high-performance computing systems such as cluster computing in that grid computers have each node set to perform a different task/application. Grid computers also tend to be more heterogeneous and geographically dispersed (thus not physically coupled) than cluster computers. Although a single grid can be dedicated to a particular application, commonly a grid is used for a variety of purposes. Grids are often constructed with general-purpose grid middleware software libraries. Grid sizes can be quite large.

Grids are a form of distributed computing composed of many networked loosely coupled computers acting together to perform large tasks. For certain applications, distributed or grid computing can be seen as a special type of parallel computing that relies on complete computers (with onboard CPUs, storage, power supplies, network interfaces, etc.) connected to a computer network (private or public) by a conventional network interface, such as Ethernet. This is in contrast to the traditional notion of a supercomputer, which has many processors connected by a local high-speed computer bus. This technology has been applied to computationally intensive scientific, mathematical, and academic problems through volunteer computing, and it is used in commercial enterprises for such diverse applications as drug discovery, economic forecasting, seismic analysis, and back office data processing in support for e-commerce and Web services.

View the full Wikipedia page for Grid computing
↑ Return to Menu

System resource in the context of Shared resource

In computing, a shared resource, or network share, is a computer resource made available from one host to other hosts on a computer network. It is a device or piece of information on a computer that can be remotely accessed from another computer transparently as if it were a resource in the local machine. Network sharing is made possible by inter-process communication over the network.

Some examples of shareable resources are computer programs, data, storage devices, and printers. E.g. shared file access (also known as disk sharing and folder sharing), shared printer access, shared scanner access, etc. The shared resource is called a shared disk, shared folder or shared document

View the full Wikipedia page for Shared resource
↑ Return to Menu

System resource in the context of File shortcut

In computing, a file shortcut is a handle in a user interface that allows the user to find a file or resource located in a different directory or folder from the place where the shortcut is located. Similarly, an Internet shortcut allows the user to open a page, file or resource located at a remote Internet location or Web site.

Shortcuts are typically implemented as a small file containing a target URI or GUID to an object, or the name of a target program file that the shortcut represents. The shortcut might additionally specify parameters to be passed to the target program when it is run. Each shortcut can have its own icon. Shortcuts are very commonly placed on a desktop, in an application launcher panel such as the Microsoft Windows Start menu, or in the main menu of a desktop environment. The functional equivalent in the Macintosh operating system is called an alias. Unix-like systems have symbolic links which point to a target file, and often support .desktop files which provide additional configuration details.

View the full Wikipedia page for File shortcut
↑ Return to Menu

System resource in the context of Patch (computing)

A patch is data for modifying an existing software resource such as a program or a file, often to fix bugs and security vulnerabilities. Patch is also the process of applying the data to the existing resource. Patching a system involves applying a patch. A patch may be created to improve functionality, usability, or performance. A patch may be created manually, but commonly it is created via a tool that compares two versions of the resource and generates data that can be used to transform one to the other.

Typically, a patch needs to be applied to the specific version of the resource it is intended to modify, although there are exceptions. Some patching tools can detect the version of the existing resource and apply the appropriate patch, even if it supports multiple versions. As more patches are released, their cumulative size can grow significantly, sometimes exceeding the size of the resource itself. To manage this, the number of supported versions may be limited, or a complete copy of the resource might be provided instead.

View the full Wikipedia page for Patch (computing)
↑ Return to Menu

System resource in the context of Code block

In computer programming, a block of source code is a grouping of statements that execute in sequential order, top to bottom. The block structure is fundamental to structured programming, where control structures are formed with blocks. Syntactically, a block acts much like a single statement in that a control structure generally operates either on a single statement or a block.

The nature of a block varies by programming language, but there are typical features. A block usually provides for visibility scope such that an identifier defined in a block is not visible in outer, containing blocks, but is visible in inner, nested blocks unless it is masked by an identifier with the same name. A block usually provides for lifetime scope such that resources associated with an identifier are partially or fully released when control flow reaches the end of the block in which the identifier was defined.

View the full Wikipedia page for Code block
↑ Return to Menu

System resource in the context of Load balancing (computing)

In computing, load balancing is the process of distributing a set of tasks over a set of resources (computing units) with the aim of making their overall processing more efficient. Load balancing can optimize response time and avoid unevenly overloading some compute nodes while other compute nodes are left idle.

Load balancing is the subject of research in the field of parallel computers. Two main approaches exist: static algorithms, which do not take into account the state of the different machines, and dynamic algorithms, which are usually more general and more efficient but require exchanges of information between the different computing units, at the risk of a loss of efficiency.

View the full Wikipedia page for Load balancing (computing)
↑ Return to Menu

System resource in the context of Overhead information

In computing, overhead is the consumption of computing resources for aspects that are not directly related to achieving a desired goal. Overhead is required for more general processing and impacts achieving a more focused goal. Overhead manifests as aspects such as slower processing, less memory, less storage capacity, less network bandwidth, and longer latency. Overhead can impact software design with regard to structure, error correction, and feature inclusion.

Overhead in computing is a special case of engineering overhead and has the same essential meaning as in business: organizational overhead.

View the full Wikipedia page for Overhead information
↑ Return to Menu