Symmetry orbit in the context of "Automorphism group"

Play Trivia Questions online!

or

Skip to study material about Symmetry orbit in the context of "Automorphism group"

Ad spacer

⭐ Core Definition: Symmetry orbit

In mathematics, an action of a group on a set is, loosely speaking, an operation that takes an element of and an element of and produces another element of More formally, it is a group homomorphism from to the automorphism group of X (the set of all bijections on along with group operation being function composition). One says that acts on

Many sets of transformations form a group under function composition; for example, the rotations around a point in the plane. It is often useful to consider the group as an abstract group, and to say that one has a group action of the abstract group that consists of performing the transformations of the group of transformations. The reason for distinguishing the group from the transformations is that, generally, a group of transformations of a structure acts also on various related structures; for example, the above rotation group also acts on triangles by transforming triangles into triangles.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Symmetry orbit in the context of Vertex-transitive

In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.

Technically, one says that for any two vertices there exists a symmetry of the polytope mapping the first isometrically onto the second. Other ways of saying this are that the group of automorphisms of the polytope acts transitively on its vertices, or that the vertices lie within a single symmetry orbit.

↑ Return to Menu

Symmetry orbit in the context of Face-transitive

In geometry, a tessellation of dimension 2 (a plane tiling) or higher, or a polytope of dimension 3 (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congruent but must be transitive, i.e. must lie within the same symmetry orbit. In other words, for any two faces A and B, there must be a symmetry of the entire figure by translations, rotations, and/or reflections that maps A onto B. For this reason, convex isohedral polyhedra are the shapes that will make fair dice.

Isohedral polyhedra are called isohedra. They can be described by their face configuration. An isohedron has an even number of faces.

↑ Return to Menu