Symmetric space in the context of "Representation theory"

Play Trivia Questions online!

or

Skip to study material about Symmetric space in the context of "Representation theory"

Ad spacer

⭐ Core Definition: Symmetric space

In mathematics, a symmetric space is a Riemannian manifold (or more generally, a pseudo-Riemannian manifold) whose group of isometries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis.

In geometric terms, a complete, simply connected Riemannian manifold is a symmetric space if and only if its curvature tensor is invariant under parallel transport. More generally, a Riemannian manifold (M, g) is said to be symmetric if and only if, for each point p of M, there exists an isometry of M fixing p and acting on the tangent space as minus the identity (every symmetric space is complete, since any geodesic can be extended indefinitely via symmetries about the endpoints). Both descriptions can also naturally be extended to the setting of pseudo-Riemannian manifolds.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Symmetric space in the context of Reflection (mathematics)

In mathematics, a reflection (also spelled reflexion) is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as the set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection. The image of a figure by a reflection is its mirror image in the axis or plane of reflection. For example the mirror image of the small Latin letter p for a reflection with respect to a vertical axis (a vertical reflection) would look like q. Its image by reflection in a horizontal axis (a horizontal reflection) would look like b. A reflection is an involution: when applied twice in succession, every point returns to its original location, and every geometrical object is restored to its original state.

The term reflection is sometimes used for a larger class of mappings from a Euclidean space to itself, namely the non-identity isometries that are involutions. The set of fixed points (the "mirror") of such an isometry is an affine subspace, but is possibly smaller than a hyperplane. For instance a reflection through a point is an involutive isometry with just one fixed point; the image of the letter p under itwould look like a d. This operation is also known as a central inversion (Coxeter 1969, §7.2), and exhibits Euclidean space as a symmetric space. In a Euclidean vector space, the reflection in the point situated at the origin is the same as vector negation. Other examples include reflections in a line in three-dimensional space. Typically, however, unqualified use of the term "reflection" means reflection in a hyperplane.

↑ Return to Menu

Symmetric space in the context of Hyperbolic space

In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant negative sectional curvature, often taken to be  −1 for simplicity. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H, which was the first instance studied, is also called the hyperbolic plane.

It is also sometimes referred to as Lobachevsky space or Bolyai–Lobachevsky space after the names of the author who first published on the topic of hyperbolic geometry. Sometimes the qualificative "real" is added to distinguish it from complex hyperbolic spaces.

↑ Return to Menu