GW150914 in the context of "Theory of relativity"

⭐ In the context of the theory of relativity, GW150914 – the first directly observed gravitational wave – is best understood as a confirmation of which aspect of Einstein’s work?

Ad spacer

⭐ Core Definition: GW150914

The first direct observation of gravitational waves was made on 14 September 2015 and was announced by the LIGO and Virgo collaborations on 11 February 2016. Previously, gravitational waves had been inferred only indirectly, via their effect on the timing of pulsars in binary star systems. The waveform, detected by both LIGO observatories, matched the predictions of general relativity for a gravitational wave emanating from the inward spiral and merger of two black holes (of 36 M and 29 M) and the subsequent ringdown of a single, 62 M black hole remnant. The signal was named GW150914 (from gravitational wave and the date of observation 2015-09-14). It was also the first observation of a binary black hole merger, demonstrating both the existence of binary stellar-mass black hole systems and the fact that such mergers could occur within the current age of the universe.

This first direct observation was reported around the world as a remarkable accomplishment for many reasons. Efforts to directly prove the existence of such waves had been ongoing for over fifty years, and the waves are so minuscule that Albert Einstein himself doubted that they could ever be detected. The waves given off by the cataclysmic merger of GW150914 reached Earth as a ripple in spacetime that changed the length of a 1,120 km LIGO effective span by a thousandth of the width of a proton, proportionally equivalent to changing the distance to the nearest star outside the Solar System by one hair's width. The energy released by the binary as it spiralled together and merged was immense, with the energy of 3.0+0.5
−0.5
cM (5.3+0.9
−0.8
×10 joules or 5300+900
−800
foes) in total radiated as gravitational waves, reaching a peak emission rate in its final few milliseconds of about 3.6+0.5
−0.4
×10 watts – a level greater than the combined power of all light radiated by all the stars in the observable universe.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 GW150914 in the context of Theory of relativity

The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to the forces of nature. It applies to the cosmological and astrophysical realm, including astronomy.

The theory transformed theoretical physics and astronomy during the 20th century, superseding a 200-year-old theory of mechanics created primarily by Isaac Newton. It introduced concepts including 4-dimensional spacetime as a unified entity of space and time, relativity of simultaneity, kinematic and gravitational time dilation, and length contraction. In the field of physics, relativity improved the science of elementary particles and their fundamental interactions, along with ushering in the nuclear age. With relativity, cosmology and astrophysics predicted extraordinary astronomical phenomena such as neutron stars, black holes, and gravitational waves.

↓ Explore More Topics
In this Dossier

GW150914 in the context of Binary black hole

A binary black hole (BBH), or black hole binary, is an astronomical object consisting of two black holes in close orbit around each other. Like black holes themselves, binary black hole systems are classified as either stellar-mass—involving remnants of high-mass binary star systems or formed by dynamic processes and mutual capture—or supermassive, black hole systems believed to arise from galactic mergers.

The existence of stellar-mass binary black holes was directly confirmed by gravitational wave observation in September 2015. Supermassive binary black hole candidates have been proposed based on indirect evidence, but await observational confirmation.

↑ Return to Menu

GW150914 in the context of Special and general relativity

The theory of relativity comprises two physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to the forces of nature. It applies to the cosmological and astrophysical realm, including astronomy.

The theory transformed theoretical physics and astronomy during the 20th century, superseding a 200-year-old theory of mechanics created primarily by Isaac Newton. It introduced concepts including 4-dimensional spacetime as a unified entity of space and time, relativity of simultaneity, kinematic and gravitational time dilation, and length contraction. In the field of physics, relativity improved the science of elementary particles and their fundamental interactions, along with ushering in the nuclear age. With relativity, cosmology and astrophysics predicted extraordinary astronomical phenomena such as neutron stars, black holes, and gravitational waves.

↑ Return to Menu