Supernova remnant in the context of "Tycho's Supernova"

Play Trivia Questions online!

or

Skip to study material about Supernova remnant in the context of "Tycho's Supernova"

Ad spacer

⭐ Core Definition: Supernova remnant

A supernova remnant (SNR) is the structure resulting from the explosion of a star in a supernova. The supernova remnant is bounded by an expanding shock wave, and consists of ejected material expanding from the explosion, and the interstellar material it sweeps up and shocks along the way.

There are two common routes to a supernova: either a massive star may run out of fuel, ceasing to generate fusion energy in its core, and collapsing inward under the force of its own gravity to form a neutron star or a black hole; or a white dwarf star may accrete material from a companion star until it reaches a critical mass and undergoes a carbon detonation.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Supernova remnant in the context of Tycho's Supernova

SN 1572 (Tycho's Star, Tycho's Nova, Tycho's Supernova), or B Cassiopeiae (B Cas), was a supernova of Type Ia in the constellation Cassiopeia, one of eight supernovae visible to the naked eye in historical records. It appeared in early November 1572 and was independently discovered by many individuals.

Its supernova remnant has been observed optically but was first detected at radio wavelengths. It is often known as 3C 10, a radio-source designation, although increasingly as Tycho's supernova remnant.

↓ Explore More Topics
In this Dossier

Supernova remnant in the context of Supernova

A supernova (pl.: supernovae) is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the progenitor, either collapses to a neutron star or black hole, or is completely destroyed to form a diffuse nebula. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months.

The last supernova directly observed in the Milky Way was Kepler's Supernova in 1604, appearing not long after Tycho's Supernova in 1572, both of which were visible to the naked eye. Observations of recent supernova remnants within the Milky Way, coupled with studies of supernovae in other galaxies, suggest that these powerful stellar explosions occur in our galaxy approximately three times per century on average. A supernova in the Milky Way would almost certainly be observable through modern astronomical telescopes. The most recent naked-eye supernova was SN 1987A, which was the explosion of a blue supergiant star in the Large Magellanic Cloud, a satellite galaxy of the Milky Way in 1987.

↑ Return to Menu

Supernova remnant in the context of PSR B1509−58

PSR B1509−58 is a pulsar approximately at a distance of 17,000 light-years in the constellation of Circinus discovered by the Einstein X-Ray Observatory in 1982. Its diameter is only 12 miles (19 km). It is located in a Pulsar wind nebula created by itself, that was caused as a remnant of the Supernova (SNR) MSH 15−52 visual approximately 1,700 years ago at the southern celestial hemisphere not visible in the Northern Hemisphere. The nebula spans about 150 light years. The 0.1515 second pulsations ("6.597 times per second") are detected in the radio, X-ray, and γ-ray bands.

NASA described the star as "a rapidly spinning neutron star which is spewing energy out into the space around it to create complex and intriguing structures, including one that resembles a large cosmic hand". It is also known by the name "Hand of God". This phenomenon is called pareidolia.

↑ Return to Menu

Supernova remnant in the context of Sagittarius A

Sagittarius A (Sgr A) is a complex radio source at the center of the Milky Way, which contains a supermassive black hole. It is located between Scorpius and Sagittarius, and is hidden from view at optical wavelengths by large clouds of cosmic dust in the spiral arms of the Milky Way. The dust lane that obscures the Galactic Center from a vantage point around the Sun causes the Great Rift through the bright bulge of the galaxy.

The radio source consists of three components: the supernova remnant Sagittarius A East, the spiral structure Sagittarius A West, and a very bright compact radio source at the center of the spiral, Sagittarius A* (read "A-star"). These three overlap: Sagittarius A East is the largest, West appears off-center within East, and A* is at the center of West.

↑ Return to Menu

Supernova remnant in the context of Palermo Astronomical Observatory

The Giuseppe S. Vaiana Astronomical Observatory is an astronomical observatory located in Palermo, Sicily, Italy, housed inside the Palazzo dei Normanni. It is one of the research facilities of the National Institute of Astrophysics. The observatory carries out research projects in the field of astronomy and astrophysics including the study of solar and stellar coronas, stellar evolution (including the birth of stars) and of the supernova remnants.

↑ Return to Menu

Supernova remnant in the context of Crab Nebula

The Crab Nebula (catalogue designations M1, NGC 1952, Taurus A) is a supernova remnant and pulsar wind nebula in the constellation of Taurus. The common name comes from a drawing that somewhat resembled a crab with arms produced by William Parsons, 3rd Earl of Rosse, in 1842 or 1843 using a 36-inch (91 cm) telescope. The nebula was discovered by English astronomer John Bevis in 1731. It corresponds with a bright supernova observed in 1054 C.E. by Mayan, Japanese, and Arab stargazers; this supernova was also recorded by Chinese astronomers as a guest star. The nebula was the first astronomical object identified that corresponds with a historically-observed supernova explosion.

At an apparent magnitude of 8.4, comparable to that of Saturn's moon Titan, it is not visible to the naked eye but can be made out using binoculars under favourable conditions. The nebula lies in the Perseus Arm of the Milky Way galaxy, at a distance of about 2.0 kiloparsecs (6,500 ly) from Earth. It has a diameter of 3.4 parsecs (11 ly), corresponding to an apparent diameter of some 7 arcminutes, and is expanding at a rate of about 1,500 kilometres per second (930 mi/s), or 0.5% of the speed of light.

↑ Return to Menu