Supergiant star in the context of Hertzsprung–Russell diagram


Supergiant star in the context of Hertzsprung–Russell diagram

⭐ Core Definition: Supergiant star

Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram, with absolute visual magnitudes between about −3 and −8. The temperatures of supergiant stars range from about 3,400 K to over 20,000 K.

↓ Menu
HINT:

In this Dossier

Supergiant star in the context of Neutron star

A neutron star is the gravitationally collapsed core of a massive supergiant star. It results from the supernova explosion of a massive star—combined with gravitational collapse—that compresses the core past white dwarf star density to that of atomic nuclei. Surpassed only by black holes, neutron stars are the second smallest and densest known class of stellar objects. Neutron stars have a radius on the order of 10 kilometers (6 miles) and a mass of about 1.4 solar masses (M). Stars that collapse into neutron stars have a total mass of between 10 and 25 M or possibly more for those that are especially rich in elements heavier than hydrogen and helium.

Once formed, neutron stars no longer actively generate heat and cool over time, but they may still evolve further through collisions or accretion. Most of the basic models for these objects imply that they are composed almost entirely of neutrons, as the extreme pressure causes the electrons and protons present in normal matter to combine into additional neutrons. These stars are partially supported against further collapse by neutron degeneracy pressure, just as white dwarfs are supported against collapse by electron degeneracy pressure. However, this is not by itself sufficient to hold up an object beyond 0.7 M and repulsive nuclear forces increasingly contribute to supporting more massive neutron stars. If the remnant star has a mass exceeding the Tolman–Oppenheimer–Volkoff limit, approximately 2.2 to 2.9 M, the combination of degeneracy pressure and nuclear forces is insufficient to support the neutron star, causing it to collapse and form a black hole. The most massive neutron star detected so far, PSR J0952–0607, is estimated to be 2.35±0.17 M.

View the full Wikipedia page for Neutron star
↑ Return to Menu

Supergiant star in the context of Rigel

Rigel is a blue supergiant star in the equatorial constellation of Orion. It has the Bayer designation β Orionis, which is Latinized to Beta Orionis and abbreviated Beta Ori or β Ori. Rigel is the brightest and most massive component – and the eponym – of a star system of at least four stars that appear as a single blue-white point of light to the naked eye. This system is located at a distance of approximately 850 light-years (260 pc).

A star of spectral type B8Ia, Rigel is calculated to be anywhere from 61,500 to 363,000 times as luminous as the Sun, and 18 to 24 times as massive, depending on the method and assumptions used. Its radius is more than seventy times that of the Sun, and its surface temperature is 12,100 K. Due to its stellar wind, Rigel's mass-loss is estimated to be ten million times that of the Sun. With an estimated age of seven to nine million years, Rigel has exhausted its core hydrogen fuel, expanded, and cooled to become a supergiant. It is expected to end its life as a type II supernova, leaving a neutron star or a black hole as a final remnant, depending on the initial mass of the star.

View the full Wikipedia page for Rigel
↑ Return to Menu

Supergiant star in the context of Perseus (constellation)

Perseus is a constellation in the northern sky, named after the Greek mythological hero Perseus. It is one of the 48 ancient constellations listed by the 2nd-century astronomer Ptolemy, and among the 88 modern constellations defined by the International Astronomical Union (IAU). It is located near several other constellations named after ancient Greek legends surrounding Perseus, including Andromeda to the west and Cassiopeia to the north. Perseus is also bordered by Aries and Taurus to the south, Auriga to the east, Camelopardalis to the north, and Triangulum to the west. Some star atlases during the early 19th century also depicted Perseus holding the disembodied head of Medusa, whose asterism was named together as Perseus et Caput Medusae; however, this never came into popular usage.

The galactic plane of the Milky Way passes through Perseus, whose brightest star is the yellow-white supergiant Alpha Persei (also called Mirfak), which shines at magnitude 1.79. It and many of the surrounding stars are members of an open cluster known as the Alpha Persei Cluster. The best-known star, however, is Algol (Beta Persei), linked with ominous legends because of its variability, which is noticeable to the naked eye. Rather than being an intrinsically variable star, it is an eclipsing binary. Other notable star systems in Perseus include X Persei, a binary system containing a neutron star, and GK Persei, a nova that peaked at magnitude 0.2 in 1901. The Double Cluster, comprising two open clusters quite near each other in the sky, was known to the ancient Chinese. The constellation gives its name to the Perseus Cluster (Abell 426), a massive galaxy cluster located 250 million light-years from Earth. It hosts the radiant of the annual Perseids meteor shower—one of the most prominent meteor showers in the sky.

View the full Wikipedia page for Perseus (constellation)
↑ Return to Menu

Supergiant star in the context of Cygnus X-1

Cygnus X-1 (abbreviated Cyg X-1) is a galactic X-ray source in the constellation Cygnus and was the first such source widely accepted to be a black hole. It was discovered in 1964 during a rocket flight and is one of the strongest X-ray sources detectable from Earth, producing a peak X-ray flux density of 2.3×10 W/(mHz) (2.3×10 jansky). It remains among the most studied astronomical objects in its class. The compact object is now estimated to have a mass about 21.2 times the mass of the Sun and has been shown to be too small to be any known kind of normal star or other likely object besides a black hole. If so, the radius of its event horizon has 300 km "as upper bound to the linear dimension of the source region" of occasional X-ray bursts lasting only for about 1 ms.

Cygnus X-1 is a high-mass X-ray binary system located about 7,000 light-years away, that includes a blue supergiant variable star. The supergiant and black hole are separated by about 0.2 AU, or 20% of the distance from Earth to the Sun. A stellar wind from the star provides material for an accretion disk around the X-ray source. Matter in the inner disk is heated to millions of degrees, generating the observed X-rays. A pair of relativistic jets, arranged perpendicularly to the disk, are carrying part of the energy of the infalling material away into interstellar space.

View the full Wikipedia page for Cygnus X-1
↑ Return to Menu

Supergiant star in the context of O-type star

An O-type star is a hot, blue star of spectral type O in the Yerkes classification system employed by astronomers. They have surface temperatures in excess of 30,000 kelvins (K). Stars of this type have strong absorption lines of ionised helium, strong lines of other ionised elements, and hydrogen and neutral helium lines weaker than spectral type B.

Stars of this type are very rare, but because they are very bright, they can be seen at great distances; out of the 90 brightest stars as seen from Earth, 4 are type O. Due to their high mass, O-type stars end their lives rather quickly in violent supernova explosions, resulting in black holes or neutron stars. Most of these stars are young massive main sequence, giant, or supergiant stars, but also some central stars of planetary nebulae, old low-mass stars near the end of their lives, which typically have O-like spectra.

View the full Wikipedia page for O-type star
↑ Return to Menu

Supergiant star in the context of Alpha Persei Cluster

The Alpha Persei Cluster, also known as Melotte 20 or Collinder 39, is an open cluster of stars in the northern constellation of Perseus. To the naked eye, the cluster consists of several blue-hued spectral type B stars. The most luminous member is the ~2nd magnitude yellow supergiant Mirfak, also known as Alpha Persei. Bright members also include Delta, Sigma, Psi, 29, 30, 34, and 48 Persei. The Hipparcos satellite and infrared color-magnitude diagram fitting have been used to establish a distance to the cluster of ~560 light-years (172 pc). The distance established via the independent analyses agree, thereby making the cluster an important rung on the cosmic distance ladder. As seen from the Earth, the extinction of the cluster due to interstellar dust is around 0.30.

The cluster is centered to the northeast of Alpha Persei. It has a core radius of 11.4 ± 1.4 ly, a half-mass radius of 18 ly, and a tidal radius of 70.6 ± 8.5 ly, with 517 members being identified within the latter. The cluster shows solid evidence of having undergone mass segregation, with the mean stellar mass decreasing toward the edge. The age of this cluster is about 50–70 million years. Cluster member stars show a near-solar metallicity, meaning the abundance of elements with atomic numbers higher than 2 are similar to those in the Sun. The cluster shows evidence of tidal tails, which are most likely of galactic origin.

View the full Wikipedia page for Alpha Persei Cluster
↑ Return to Menu