Subspace (mathematics) in the context of 1 dimension


Subspace (mathematics) in the context of 1 dimension

Subspace (mathematics) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Subspace (mathematics) in the context of "1 dimension"


⭐ Core Definition: Subspace (mathematics)

In mathematics, a space is a set (sometimes known as a universe) endowed with a structure defining the relationships among the elements of the set.A subspace is a subset of the parent space which retains the same structure.While modern mathematics uses many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, Hilbert spaces, or probability spaces, it does not define the notion of "space" itself.

A space consists of selected mathematical objects that are treated as points, and selected relationships between these points. The nature of the points can vary widely: for example, the points can represent numbers, functions on another space, or subspaces of another space. It is the relationships that define the nature of the space. More precisely, isomorphic spaces are considered identical, where an isomorphism between two spaces is a one-to-one correspondence between their points that preserves the relationships. For example, the relationships between the points of a three-dimensional Euclidean space are uniquely determined by Euclid's axioms, and all three-dimensional Euclidean spaces are considered identical.

↓ Menu
HINT:

In this Dossier

Subspace (mathematics) in the context of Hyperplane

In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is one less than that of the ambient space. Two lower-dimensional examples of hyperplanes are one-dimensional lines in a plane and zero-dimensional points on a line.

Most commonly, the ambient space is n-dimensional Euclidean space, in which case the hyperplanes are the (n − 1)-dimensional "flats", each of which separates the space into two half spaces. A reflection across a hyperplane is a kind of motion (geometric transformation preserving distance between points), and the group of all motions is generated by the reflections. A convex polytope is the intersection of half-spaces.

View the full Wikipedia page for Hyperplane
↑ Return to Menu

Subspace (mathematics) in the context of One-dimensional space

A one-dimensional space (1D space) is a mathematical space in which location can be specified with a single coordinate. An example is the number line, each point of which is described by a single real number. Any straight line or smooth curve is a one-dimensional space, regardless of the dimension of the ambient space in which the line or curve is embedded. Examples include the circle on a plane, or a parametric space curve.In physical space, a 1D subspace is called a "linear dimension" (rectilinear or curvilinear), with units of length (e.g., metre).

In algebraic geometry there are several structures that are one-dimensional spaces but are usually referred to by more specific terms. Any field is a one-dimensional vector space over itself. The projective line over denoted is a one-dimensional space. In particular, if the field is the complex numbers then the complex projective line is one-dimensional with respect to (but is sometimes called the Riemann sphere, as it is a model of the sphere, two-dimensional with respect to real-number coordinates).

View the full Wikipedia page for One-dimensional space
↑ Return to Menu

Subspace (mathematics) in the context of Linear subspace

In mathematics, and more specifically in linear algebra, a linear subspace or vector subspace is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces.

View the full Wikipedia page for Linear subspace
↑ Return to Menu