Structural analysis in the context of "Mechanical design"

Play Trivia Questions online!

or

Skip to study material about Structural analysis in the context of "Mechanical design"

Ad spacer

⭐ Core Definition: Structural analysis

Structural analysis is a branch of solid mechanics which uses simplified models for solids like bars, beams and shells for engineering decision making. Its main objective is to determine the effect of loads on physical structures and their components. In contrast to theory of elasticity, the models used in structural analysis are often differential equations in one spatial variable. Structures subject to this type of analysis include all that must withstand loads, such as buildings, bridges, aircraft and ships. Structural analysis uses ideas from applied mechanics, materials science and applied mathematics to compute a structure's deformations, internal forces, stresses, support reactions, velocity, accelerations, and stability. The results of the analysis are used to verify a structure's fitness for use, often precluding physical tests. Structural analysis is thus a key part of the engineering design of structures.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Structural analysis in the context of Mechanical engineering


Mechanical engineering is the study of physical machines and mechanisms that may involve force and movement. It is an engineering branch that combines engineering physics and mathematics principles with materials science, to design, analyze, manufacture, and maintain mechanical systems. It is one of the oldest and broadest of the engineering branches.

Mechanical engineering requires an understanding of core areas including mechanics, dynamics, thermodynamics, materials science, design, structural analysis, and electricity. In addition to these core principles, mechanical engineers use tools such as computer-aided design (CAD), computer-aided manufacturing (CAM), computer-aided engineering (CAE), and product lifecycle management to design and analyze manufacturing plants, industrial equipment and machinery, heating and cooling systems, transport systems, motor vehicles, aircraft, watercraft, robotics, medical devices, weapons, and others.

↑ Return to Menu

Structural analysis in the context of Structural element

In structural engineering, structural elements are used in structural analysis to split a complex structure into simple elements (each bearing a structural load). Within a structure, an element cannot be broken down (decomposed) into parts of different kinds (e.g., beam or column).

Structural building components are specialized structural building products designed, engineered and manufactured under controlled conditions for a specific application. They are incorporated into the overall building structural system by a building designer. Examples are wood or steel roof trusses, floor trusses, floor panels, I-joists, or engineered beams and headers. A structural building component manufacturer or truss manufacturer is an individual or company regularly engaged in the manufacturing of components.

↑ Return to Menu

Structural analysis in the context of Structural load

A structural load or structural action is a mechanical load (more generally a force) applied to structural elements. A load causes stress, deformation, displacement or acceleration in a structure. Structural analysis, a discipline in engineering, analyzes the effects of loads on structures and structural elements. Excess load may cause structural failure, so this should be considered and controlled during the design of a structure. Particular mechanical structures—such as aircraft, satellites, rockets, space stations, ships, and submarines—are subject to their own particular structural loads and actions. Engineers often evaluate structural loads based upon published regulations, contracts, or specifications. Accepted technical standards are used for acceptance testing and inspection.

↑ Return to Menu

Structural analysis in the context of Linear elasticity

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

The fundamental assumptions of linear elasticity are infinitesimal strains — meaning, "small" deformations — and linear relationships between the components of stress and strain — hence the "linear" in its name. Linear elasticity is valid only for stress states that do not produce yielding. Its assumptions are reasonable for many engineering materials and engineering design scenarios. Linear elasticity is therefore used extensively in structural analysis and engineering design, often with the aid of finite element analysis.

↑ Return to Menu

Structural analysis in the context of Packaging engineer

Packaging engineering, also package engineering, packaging technology and packaging science, is a broad topic ranging from design conceptualization to product placement. All steps along the manufacturing process, and more, must be taken into account in the design of the package for any given product. Package engineering is an interdisciplinary field integrating science, engineering, technology and management to protect and identify products for distribution, storage, sale, and use. It encompasses the process of design, evaluation, and production of packages. It is a system integral to the value chain that impacts product quality, user satisfaction, distribution efficiencies, and safety. Package engineering includes industry-specific aspects of industrial engineering, marketing, materials science, industrial design and logistics. Packaging engineers must interact with research and development, manufacturing, marketing, graphic design, regulatory, purchasing, planning and so on. The package must sell and protect the product, while maintaining an efficient, cost-effective process cycle.

Engineers develop packages from a wide variety of rigid and flexible materials. Some materials have scores or creases to allow controlled folding into package shapes (sometimes resembling origami). Packaging involves extrusion, thermoforming, molding and other processing technologies. Packages are often developed for high speed fabrication, filling, processing, and shipment. Packaging engineers use principles of structural analysis and thermal analysis in their evaluations.

↑ Return to Menu

Structural analysis in the context of Constitutive equation

In physics and engineering, a constitutive equation or constitutive relation is a relation between two or more physical quantities (especially kinetic quantities as related to kinematic quantities) that is specific to a material or substance or field, and approximates its response to external stimuli, usually as applied fields or forces. They are combined with other equations governing physical laws to solve physical problems; for example in fluid mechanics the flow of a fluid in a pipe, in solid state physics the response of a crystal to an electric field, or in structural analysis, the connection between applied stresses or loads to strains or deformations.

Some constitutive equations are simply phenomenological; others are derived from first principles. A common approximate constitutive equation frequently is expressed as a simple proportionality using a parameter taken to be a property of the material, such as electrical conductivity or a spring constant. However, it is often necessary to account for the directional dependence of the material, and the scalar parameter is generalized to a tensor. Constitutive relations are also modified to account for the rate of response of materials and their non-linear behavior. See the article Linear response function.

↑ Return to Menu