Stress–strain analysis in the context of "Ultimate tensile strength"

Play Trivia Questions online!

or

Skip to study material about Stress–strain analysis in the context of "Ultimate tensile strength"

Ad spacer

⭐ Core Definition: Stress–strain analysis

Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material.

In simple terms we can define stress as the force of resistance per unit area, offered by a body against deformation. Stress is the ratio of force over area (S = R/A, where S is the stress, R is the internal resisting force and A is the cross-sectional area). Strain is the ratio of change in length to the original length, when a given body is subjected to some external force (Strain= change in length÷the original length).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Stress–strain analysis in the context of Tensile strength

Ultimate tensile strength (also called UTS, tensile strength, TS, ultimate strength or in notation) is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials, the ultimate tensile strength is close to the yield point, whereas in ductile materials, the ultimate tensile strength can be higher.

The ultimate tensile strength is usually found by performing a tensile test and recording the engineering stress versus strain. The highest point of the stress–strain curve is the ultimate tensile strength and has units of stress. The equivalent point for the case of compression, instead of tension, is called the compressive strength.

↑ Return to Menu