Strangeness in the context of "Conservation law (physics)"

Play Trivia Questions online!

or

Skip to study material about Strangeness in the context of "Conservation law (physics)"

Ad spacer

⭐ Core Definition: Strangeness

In particle physics, strangeness (symbol S) is a property of particles, expressed as a quantum number, for describing decay of particles in strong and electromagnetic interactions that occur in a short period of time. The strangeness of a particle is defined as:where ns represents the number of strange quarks (s) and ns represents the number of strange antiquarks (s). Evaluation of strangeness production has become an important tool in search, discovery, observation and interpretation of quark–gluon plasma (QGP). Strangeness is an excited state of matter and its decay is governed by CKM mixing.

The terms strange and strangeness predate the discovery of the quark, and were adopted after its discovery in order to preserve the continuity of the phrase: strangeness of particles as −1 and anti-particles as +1, per the original definition. For all the quark flavour quantum numbers (strangeness, charm, topness and bottomness) the convention is that the flavour charge and the electric charge of a quark have the same sign. With this, any flavour carried by a charged meson has the same sign as its charge.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Strangeness in the context of Conservation law

In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of mass-energy, conservation of linear momentum, conservation of angular momentum, and conservation of electric charge. There are also many approximate conservation laws, which apply to such quantities as mass, parity, lepton number, baryon number, strangeness, hypercharge, etc. These quantities are conserved in certain classes of physics processes, but not in all.

A local conservation law is usually expressed mathematically as a continuity equation, a partial differential equation which gives a relation between the amount of the quantity and the "transport" of that quantity. It states that the amount of the conserved quantity at a point or within a volume can only change by the amount of the quantity which flows in or out of the volume.

↑ Return to Menu

Strangeness in the context of Exotic meson

In particle physics, exotic mesons are mesons that have quantum numbers not possible in the quark model; some proposals for non-standard quark model mesons could be:

All exotic mesons are classed as mesons because they are hadrons and carry zero baryon number. Of these, glueballs must be flavor singlets – that is, must have zero isospin, strangeness, charm, bottomness, and topness. Like all particle states, exotic mesons are specified by the quantum numbers which label representations of the Poincaré symmetry, q.e., by the mass (enclosed in parentheses), and by J, where J is the angular momentum, P is the intrinsic parity, and C is the charge conjugation parity; One also often specifies the isospin I of the meson. Typically, every quark model meson comes in SU(3) flavor nonet: an octet and an associated flavor singlet. A glueball shows up as an extra (supernumerary) particle outside the nonet.

↑ Return to Menu

Strangeness in the context of Strange D meson

The D mesons are the lightest particle that contain charm quarks. They are often studied to gain knowledge on the weak interaction. The strangemesons (Ds) were called "F mesons" prior to 1986.

↑ Return to Menu

Strangeness in the context of Strange particle

A strange particle is an elementary particle with a strangeness quantum number different from zero. Strange particles are members of a large family of elementary particles carrying the quantum number of strangeness, including several cases where the quantum number is hidden in a strange/anti-strange pair, for example in the Φ meson. The classification of particles, as mesons and baryons, follows the quark/anti-quark and three quark content respectively. Murray Gell-Mann recognized the group structure of elementary particle classification introducing the flavour SU(3) and strangeness as a new quantum number.

↑ Return to Menu