Stoner–Wohlfarth model in the context of Magnetic hysteresis


Stoner–Wohlfarth model in the context of Magnetic hysteresis
HINT:

👉 Stoner–Wohlfarth model in the context of Magnetic hysteresis

Magnetic hysteresis occurs when an external magnetic field is applied to a ferromagnet such as iron and the atomic dipoles align themselves with it. Even when the field is removed, part of the alignment will be retained: the material has become magnetized. Once magnetized, the magnet will stay magnetized indefinitely. To demagnetize it requires heat or a magnetic field in the opposite direction. This is the effect that provides the element of memory in a hard disk drive.

The relationship between field strength H and magnetization M is not linear in such materials. If a magnet is demagnetized (H = M = 0) and the relationship between H and M is plotted for increasing levels of field strength, M follows the initial magnetization curve. This curve increases rapidly at first and then approaches an asymptote called magnetic saturation. If the magnetic field is now reduced monotonically, M follows a different curve. At zero field strength, the magnetization is offset from the origin by an amount called the remanence. If the H-M relationship is plotted for all strengths of applied magnetic field the result is a hysteresis loop called the main loop. The width of the middle section along the H axis is twice the coercivity of the material.

↓ Explore More Topics
In this Dossier