Stellar parallax in the context of "Alpha Centauri"

Play Trivia Questions online!

or

Skip to study material about Stellar parallax in the context of "Alpha Centauri"

Ad spacer

⭐ Core Definition: Stellar parallax

Stellar parallax is the apparent shift of position (parallax) of any nearby star (or other object) against the background of distant stars. By extension, it is a method for determining the distance to the star through trigonometry, the stellar parallax method. Created by the different orbital positions of Earth, the extremely small observed shift is largest at time intervals of about six months, when Earth arrives at opposite sides of the Sun in its orbit, giving a baseline (the shortest side of the triangle made by a star to be observed and two positions of Earth) distance of about two astronomical units between observations. The parallax itself is considered to be half of this maximum, about equivalent to the observational shift that would occur due to the different positions of Earth and the Sun, a baseline of one astronomical unit (AU).

Stellar parallax is so difficult to detect that its existence was the subject of much debate in astronomy for hundreds of years. Thomas Henderson, Friedrich Georg Wilhelm von Struve, and Friedrich Bessel made the first successful parallax measurements in 1832–1838, for the stars Alpha Centauri, Vega, and 61 Cygni.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Stellar parallax in the context of Fixed stars

In astronomy, the fixed stars (Latin: stellae fixae) are the luminary points, mainly stars, that appear not to move relative to one another against the darkness of the night sky in the background. This is in contrast to those lights visible to the naked eye, namely the planets and comets, which appear to move slowly among those "fixed" stars. The fixed stars include all the stars visible to the naked eye other than the Sun, as well as the faint band of the Milky Way. Due to their star-like appearance when viewed with the naked eye, the few visible individual nebulae and other deep-sky objects are also counted among the fixed stars. Approximately 6,000 stars are visible to the naked eye under optimal conditions.

The term fixed stars is a misnomer because those celestial objects are not actually fixed with respect to one another or to Earth. Due to their immense distance from Earth, these objects appear to move so slowly in the sky that the change in their relative positions is nearly imperceptible on human timescales, except under careful examination with modern instruments, such as telescopes, that can reveal their proper motions. Hence, they can be considered to be "fixed" for many purposes, such as navigation, charting of stars, astrometry, and timekeeping.

↑ Return to Menu

Stellar parallax in the context of Parallax

Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight and is measured by the angle or half-angle of inclination between those two lines. Due to foreshortening, nearby objects show a larger parallax than farther objects, so parallax can be used to determine distances.

To measure large distances, such as the distance of a planet or a star from Earth, astronomers use the principle of parallax. Here, the term parallax is the semi-angle of inclination between two sight-lines to the star, as observed when Earth is on opposite sides of the Sun in its orbit. These distances form the lowest rung of what is called "the cosmic distance ladder", the first in a succession of methods by which astronomers determine the distances to celestial objects, serving as a basis for other distance measurements in astronomy forming the higher rungs of the ladder.

↑ Return to Menu

Stellar parallax in the context of Alpha Fornacis

Alpha Fornacis (α Fornacis, abbreviated Alpha For, α For) is a triple star system in the southern constellation of Fornax. It is the brightest star in the constellation and the only one brighter than magnitude 4.0. Based on parallax measurements obtained during the Gaia mission, it is 45.66 light-years distant.

Its three components are designated Alpha Fornacis A (officially named Dalim /ˈdlɪm/), Alpha Fornacis Ba and Alpha Fornacis Bb.

↑ Return to Menu

Stellar parallax in the context of Beta Fornacis

Beta Fornacis (Beta For, β Fornacis, β For) is solitary star in the southern constellation of Fornax. It is visible to the naked eye with an apparent visual magnitude of 4.46. Based upon an annual parallax shift of 18.46 mas, it is located around 177 light years away from the Sun. At that distance, the visual magnitude is reduced by an interstellar extinction factor of 0.1.

This is an evolved, G-type giant star with a stellar classification of G8 III. It is a red clump giant, which means it has undergone helium flash and is currently generating energy through the fusion of helium at its core. Beta Fornacis has 1.33 times the mass of the Sun and, at an age of 3.3 billion years, has expanded to 10.5 times the Sun's radius. It is radiating 51 times the solar luminosity from its outer atmosphere at an effective temperature of 4,790 K.

↑ Return to Menu

Stellar parallax in the context of Nu Fornacis

Nu Fornacis, Latinized from ν Fornacis, is a single, variable star in the southern constellation of Fornax. It is blue-white in hue and faintly visible to the naked eye with an apparent visual magnitude that fluctuates around 4.69. This body is located approximately 370 light years distant from the Sun based on parallax, and is drifting further away with a radial velocity of +18.5 km/s. It is a candidate member of the Pisces-Eridanus stellar stream, which suggests an age of 120 million years or less.

This object is an Ap star with a stellar classification of B9.5IIIspSi matching a late B-type giant star. The 'Si' suffix indicates an abundance anomaly of silicon. It is an Alpha Canum Venaticorum variable that ranges from magnitude 4.68 down to 4.73 with a period of 1.89 days – the same as its rotational period. It is 3.65 times as massive and 245 times as luminous as the Sun, with 3.44 times the Sun's diameter.

↑ Return to Menu

Stellar parallax in the context of Hipparcos Catalog

Hipparcos was a scientific satellite of the European Space Agency (ESA), launched in 1989 and operated until 1993. It was the first space experiment devoted to precision astrometry, the accurate measurement of the positions and distances of celestial objects on the sky. This was the first practical attempt at all-sky absolute parallax measurement, something not possible with groundside observatories, and thus represented a fundamental breakthrough in astronomy. The resulting high-precision measurements of the absolute positions, proper motions, and parallaxes of stars enabled better calculations of their distance and tangential velocity; when combined with radial velocity measurements from spectroscopy, astrophysicists were able to finally measure all six quantities needed to determine the motion of stars. The resulting Hipparcos Catalogue, a high-precision catalogue of more than 118,200 stars, was published in 1997. The lower-precision Tycho Catalogue of more than a million stars was published at the same time, while the enhanced Tycho-2 Catalogue of 2.5 million stars was published in 2000. Hipparcos's follow-up mission, Gaia, was launched in 2013.

The word "Hipparcos" is an acronym for High Precision Parallax Collecting Satellite and also a reference to the ancient Greek astronomer Hipparchus of Nicaea, who is noted for applications of trigonometry to astronomy and his discovery of the precession of the equinoxes.

↑ Return to Menu

Stellar parallax in the context of Delta Crateris

Delta Crateris (δ Crt, δ Crateris) is a solitary star in the southern constellation of Crater. With an apparent visual magnitude of 3.56, it is the brightest star in this rather dim constellation. It has an annual parallax shift of 17.017 mas as measured from Earth, indicating Delta Crateris lies at a distance of 192 ly from the Sun.

↑ Return to Menu

Stellar parallax in the context of Beta Crateris

Beta Crateris, Latinized from β Crateris, is a binary star system in the southern constellation of Crater. It is visible to the naked eye with an apparent visual magnitude of 4.46. Based upon an annual parallax shift of 9.59 mas as seen from Earth, it is around 340 light years from the Sun.

This is an astrometric binary star system with an orbital period of 6.0 years and a projected separation of 8.3 AU. The orbit has an estimated semimajor axis of 9.3 AU. The primary component A is listed as an A-type giant star with a stellar classification of A2 III. However, Houk and Smith-Moore (1988) give a main sequence classification of A1 V, while Abt and Morrell (1995) list it as a subgiant star with a class of A2 IV. The spectrum shows enhanced barium, possibly as a result of a previous mass transfer event.

↑ Return to Menu