Stellar classification in the context of "Polaris Australis"

Play Trivia Questions online!

or

Skip to study material about Stellar classification in the context of "Polaris Australis"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Stellar classification in the context of Gliese 445

Gliese 445 (Gl 445 or AC +79 3888) is an M-type main sequence star in the northern part of the northern circumpolar constellation of Camelopardalis.

↑ Return to Menu

Stellar classification in the context of Red giant

A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses (M)) in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around 5,000 K [K] (4,700 °C; 8,500 °F) or lower. The appearance of the red giant is from yellow-white to reddish-orange, including the spectral types K and M, sometimes G, but also class S stars and most carbon stars.

Red giants vary in the way by which they generate energy:

↑ Return to Menu

Stellar classification in the context of Wolf–Rayet star

Wolf–Rayet stars, often abbreviated as WR stars, are a rare heterogeneous set of stars with unusual spectra showing prominent broad emission lines of ionised helium and highly ionised nitrogen or carbon. The spectra indicate very high surface enhancement of heavy elements, depletion of hydrogen, and strong stellar winds. The surface temperatures of known Wolf–Rayet stars range from 20,000 K to around 210,000 K, hotter than almost all other kinds of stars. They were previously called W-type stars referring to their spectral classification.

Classic (or population I) Wolf–Rayet stars are evolved, massive stars that have completely lost their outer hydrogen and are fusing helium or heavier elements in the core. A subset of the population I WR stars show hydrogen lines in their spectra and are known as WNh stars; they are young extremely massive stars still fusing hydrogen at the core, with helium and nitrogen exposed at the surface by strong mixing and radiation-driven mass loss. A separate group of stars with WR spectra are the central stars of planetary nebulae (CSPNe), post-asymptotic giant branch stars that were similar to the Sun while on the main sequence, but have now ceased fusion and shed their atmospheres to reveal a bare carbon-oxygen core.

↑ Return to Menu

Stellar classification in the context of Brown dwarf

Brown dwarfs are substellar objects that have more mass than the biggest gas giant planets, but less than the least massive main-sequence stars. Their mass is approximately 13 to 80 times that of Jupiter (MJ)—not big enough to sustain nuclear fusion of hydrogen into helium in their cores, but massive enough to emit some light and heat from the fusion of deuterium, H, an isotope of hydrogen with a neutron as well as a proton, that can undergo fusion at lower temperatures. The most massive ones (> 65 MJ) can fuse lithium (Li).

Astronomers classify self-luminous objects by spectral type, a distinction intimately tied to the surface temperature, and brown dwarfs occupy types M (2100–3500 K), L (1300–2100 K), T (600–1300 K), and Y (< 600 K). As brown dwarfs do not undergo stable hydrogen fusion, they cool down over time, progressively passing through later spectral types as they age.

↑ Return to Menu

Stellar classification in the context of Blue supergiant star

A blue supergiant (BSG) is a hot, luminous star, often referred to as an OB supergiant. They are usually considered to be those with luminosity class I and spectral class B9 or earlier, although sometimes A-class supergiants are also deemed blue supergiants.

Blue supergiants are found towards the top left of the Hertzsprung–Russell diagram, above and to the right of the main sequence. By analogy to the red giant branch for low-mass stars, this region is also called the blue giant branch. They are larger than the Sun but smaller than a red supergiant, with surface temperatures of 10,000–50,000 K and luminosities from about 10,000 to a million times that of the Sun. They are most often an evolutionary phase between high-mass, hydrogen-fusing main-sequence stars and helium-fusing red supergiants, although new research suggests they could be the result of stellar mergers.

↑ Return to Menu

Stellar classification in the context of Habitable zone

In astronomy and astrobiology, the habitable zone (HZ), the circumstellar habitable zone (CHZ), the Goldilocks zone, is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. The bounds of the HZ are based on Earth's position in the Solar System and the amount of radiant energy it receives from the Sun. Due to the importance of liquid water to Earth's biosphere, the nature of the HZ and the objects within it may be instrumental in determining the scope and distribution of planets capable of supporting Earth-like extraterrestrial life and intelligence. As such, it is considered by many to be a major factor of planetary habitability, and the most likely place to find extraterrestrial liquid water and biosignatures elsewhere in the universe.

The habitable zone is also called the Goldilocks zone, a metaphor, allusion and antonomasia of the children's fairy tale of "Goldilocks and the Three Bears", in which a little girl chooses from sets of three items, rejecting the ones that are too extreme (large or small, hot or cold, etc.), and settling on the one in the middle, which is "just right".

↑ Return to Menu

Stellar classification in the context of Pleiades

The Pleiades (/ˈpl.ədz, ˈpl-, ˈpl-/ PLEE-ə-deez, PLAY-, PLY-), also known as Seven Sisters and Messier 45 (M45), is an asterism of an open star cluster containing young B-type stars in the northwest of the constellation Taurus. At a distance of about 444 light-years, it is among the nearest star clusters to Earth and the nearest Messier object to Earth, being the most obvious star cluster to the naked eye in the night sky. It contains the reflection nebulae NGC 1432, an HII region, and NGC 1435, known as the Merope Nebula. Around 2330 BC the Pleiades marked the vernal point. Due to the brightness of its stars, the Pleiades is viewable from most areas on Earth, even in locations with significant light pollution.

The cluster is dominated by hot blue luminous stars that have formed within the last 100 million years. Reflection nebulae around the brightest stars were once thought to be leftover material from their formation, but are now considered likely to be an unrelated dust cloud in the interstellar medium through which the stars are currently passing. This dust cloud is estimated to be moving at a speed of approximately 18 km/s relative to the stars in the cluster.

↑ Return to Menu

Stellar classification in the context of Solar analog

Solar-type stars, solar analogs (also analogues), and solar twins are stars that are particularly similar to the Sun. The stellar classification is a hierarchy with solar twin being most like the Sun followed by solar analog and then solar-type. Observations of these stars are important for understanding better the properties of the Sun in relation to other stars and the habitability of planets.

↑ Return to Menu

Stellar classification in the context of Red dwarf

A red dwarf is the smallest kind of star on the main sequence. Red dwarfs are by far the most common type of fusing star in the Milky Way, at least in the neighborhood of the Sun. However, due to their low luminosity, individual red dwarfs are not easily observed. Not one star that fits the stricter definitions of a red dwarf is visible to the naked eye. Proxima Centauri, the star nearest to the Sun, is a red dwarf, as are fifty of the sixty nearest stars. According to some estimates, red dwarfs make up three-quarters of the fusing stars in the Milky Way.

The coolest red dwarfs near the Sun have a surface temperature of about 2,000 K and the smallest have radii about 9% that of the Sun, with masses about 7.5% that of the Sun. These red dwarfs have spectral types of L0 to L2. There is some overlap with the properties of brown dwarfs, since the most massive brown dwarfs at lower metallicity can be as hot as 3,600 K and have late M spectral types.

↑ Return to Menu

Stellar classification in the context of OB star

OB stars are hot, massive stars of spectral types O or early-type B that form in loosely organized groups called OB associations. They are short lived, and thus do not move very far from where they formed within their life. During their lifetime, they will emit much ultraviolet radiation. This radiation rapidly ionizes the surrounding interstellar gas of the giant molecular cloud, forming an H II region or Strömgren sphere.

In lists of spectra the "spectrum of OB" refers to "unknown, but belonging to an OB association so thus of early type".

↑ Return to Menu