The stellar atmosphere is the outer region of the volume of a star, lying above the stellar core, radiation zone and convection zone.
The stellar atmosphere is the outer region of the volume of a star, lying above the stellar core, radiation zone and convection zone.
A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses (M☉)) in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around 5,000 K [K] (4,700 °C; 8,500 °F) or lower. The appearance of the red giant is from yellow-white to reddish-orange, including the spectral types K and M, sometimes G, but also class S stars and most carbon stars.
Red giants vary in the way by which they generate energy:
View the full Wikipedia page for Red giantIn astronomy, a corona (pl.: coronas or coronae) is the outermost layer of a star's atmosphere. It is a hot but relatively dim region of plasma populated by intermittent coronal structures such as prominences, coronal loops, and helmet streamers.
The Sun's corona lies above the chromosphere and extends millions of kilometres into outer space. Coronal light is typically obscured by diffuse sky radiation and glare from the solar disk, but can be easily seen by the naked eye during a total solar eclipse or with a specialized coronagraph. Spectroscopic measurements indicate strong ionization in the corona and a plasma temperature in excess of 1000000 kelvins, much hotter than the surface of the Sun, known as the photosphere.
View the full Wikipedia page for Stellar coronaA nova is a transient astronomical event that causes the sudden appearance of a bright, apparently "new" star (hence the name "nova", Latin for "new") that slowly fades over weeks or months. All observed novae involve white dwarfs in close binary systems, but causes of the dramatic appearance of a nova vary, depending on the circumstances of the two progenitor stars. The main sub-classes of novae are classical novae, recurrent novae (RNe), and dwarf novae. They are all considered to be cataclysmic variable stars.
Classical nova eruptions are the most common type. This type is usually created in a close binary star system consisting of a white dwarf and either a main sequence, subgiant, or red giant star. If the orbital period of the system is a few days or less, the white dwarf is close enough to its companion star to draw accreted matter onto its surface, creating a dense but shallow atmosphere. This atmosphere, mostly consisting of hydrogen, is heated by the hot white dwarf and eventually reaches a critical temperature, causing ignition of rapid runaway fusion. The sudden increase in energy expels the atmosphere into interstellar space, creating the envelope seen as visible light during the nova event. In past centuries such an event was thought to be a new star. A few novae produce short-lived nova remnants, lasting for perhaps several centuries.
View the full Wikipedia page for NovaBeta Fornacis (Beta For, β Fornacis, β For) is solitary star in the southern constellation of Fornax. It is visible to the naked eye with an apparent visual magnitude of 4.46. Based upon an annual parallax shift of 18.46 mas, it is located around 177 light years away from the Sun. At that distance, the visual magnitude is reduced by an interstellar extinction factor of 0.1.
This is an evolved, G-type giant star with a stellar classification of G8 III. It is a red clump giant, which means it has undergone helium flash and is currently generating energy through the fusion of helium at its core. Beta Fornacis has 1.33 times the mass of the Sun and, at an age of 3.3 billion years, has expanded to 10.5 times the Sun's radius. It is radiating 51 times the solar luminosity from its outer atmosphere at an effective temperature of 4,790 K.
View the full Wikipedia page for Beta FornacisA stellar core is the extremely hot, dense region at the center of a star. For an ordinary main sequence star, the core region is the volume where the temperature and pressure conditions allow for energy production through thermonuclear fusion of hydrogen into helium. This energy in turn counterbalances the mass of the star pressing inward; a process that self-maintains the conditions in thermal and hydrostatic equilibrium. The minimum temperature required for stellar hydrogen fusion exceeds 10 K (10 MK), while the density at the core of the Sun is over 100 g/cm. The core is surrounded by the stellar envelope, which transports energy from the core to the stellar atmosphere where it is radiated away into space.
View the full Wikipedia page for Stellar coreA carbon star (C-type star) is typically an asymptotic giant branch star, a luminous red giant, whose atmosphere contains more carbon than oxygen. The two elements combine in the upper layers of the star, forming carbon monoxide, which consumes most of the oxygen in the atmosphere, leaving carbon atoms free to form other carbon compounds, giving the star a "sooty" atmosphere and a strikingly ruby red appearance. There are also some dwarf and supergiant carbon stars, with the more common giant stars sometimes being called classical carbon stars to distinguish them.
In most stars (such as the Sun), the atmosphere is richer in oxygen than carbon. Ordinary stars not exhibiting the characteristics of carbon stars but cool enough to form carbon monoxide are therefore called oxygen-rich stars.
View the full Wikipedia page for Carbon starA stellar wind is a flow of gas ejected from the upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spherically symmetric.
Different types of stars have different types of stellar winds.
View the full Wikipedia page for Stellar windA chromosphere ("sphere of color", from the Ancient Greek words χρῶμα (khrôma) 'color' and σφαῖρα (sphaîra) 'sphere') is the second layer of a star's atmosphere, located above the photosphere and below the solar transition region and corona. The term usually refers to the Sun's chromosphere, but not exclusively, since it also refers to the corresponding layer of a stellar atmosphere. The name was suggested by the English astronomer Norman Lockyer after conducting systematic solar observations in order to distinguish the layer from the white-light emitting photosphere.
In the Sun's atmosphere, the chromosphere is roughly 3,000 to 5,000 kilometers (1,900 to 3,100 miles) in height, or slightly more than 1% of the Sun's radius at maximum thickness. It possesses a homogeneous layer at the boundary with the photosphere. Narrow jets of plasma, called spicules, rise from this homogeneous region and through the chromosphere, extending up to 10,000 km (6,200 mi) into the corona above.
View the full Wikipedia page for ChromosphereA solar flare is a relatively intense, localized emission of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar particle events, and other eruptive solar phenomena. The occurrence of solar flares varies with the 11-year solar cycle.
Solar flares are thought to occur when stored magnetic energy in the Sun's atmosphere accelerates charged particles in the surrounding plasma. This results in the emission of electromagnetic radiation across the electromagnetic spectrum. The typical time profile of these emissions features three identifiable phases: a precursor phase, an impulsive phase when particle acceleration dominates, a gradual phase in which hot plasma injected into the corona by the flare cools by a combination of radiation and conduction of energy back down to the lower atmosphere, and a currently unexplained EUV late phase that occurs in some flares.
View the full Wikipedia page for Solar flareSolar phenomena are natural phenomena which occur within the atmosphere of the Sun. They take many forms, including solar wind, radio wave flux, solar flares, coronal mass ejections, coronal heating and sunspots.
These phenomena are believed to be generated by a helical dynamo, located near the center of the Sun's mass, which generates strong magnetic fields, as well as a chaotic dynamo, located near the surface, which generates smaller magnetic field fluctuations. All solar fluctuations together are referred to as solar variation, producing space weather within the Sun's gravitational field.
View the full Wikipedia page for Solar activityIn solar physics, a coronal loop is a well-defined arch-like structure in the Sun's atmosphere made up of relatively dense plasma confined and isolated from the surrounding medium by magnetic flux tubes. Coronal loops begin and end at two footpoints on the photosphere and project into the transition region and lower corona. They typically form and dissipate over periods of seconds to days and may span anywhere from 1 to 1,000 megametres (621 to 621,000 mi) in length.
Coronal loops are often associated with the strong magnetic fields located within active regions and sunspots. The number of coronal loops varies with the 11 year solar cycle.
View the full Wikipedia page for Coronal loopMicrolensing Observations in Astrophysics (MOA) is a collaborative project between researchers in New Zealand and Japan, led by Professor Yasushi Muraki of Nagoya University. They use microlensing to observe dark matter, extra-solar planets, and stellar atmospheres from the Southern Hemisphere. The group concentrates especially on the detection and observation of gravitational microlensing events of high magnification, of order 100 or more, as these provide the greatest sensitivity to extrasolar planets. They work with other groups in Australia, the United States and elsewhere. Observations are conducted at New Zealand's Mt. John University Observatory using a 1.8 m (70.9 in) reflector telescope built for the project.
In September 2020, astronomers using microlensing techniques reported the detection, for the first time, of an earth-mass rogue planet unbounded by any star, and free floating in the Milky Way galaxy. In January 2022 in collaboration with Optical Gravitational Lensing Experiment (OGLE) they reported in a preprint the first rogue BH while there have been others candidates this is the most solid detection so far as their technique allowed to measure not only the amplification of light but also its deflection by the BH from the microlensing data.
View the full Wikipedia page for Microlensing Observations in AstrophysicsAn astrophysical maser is a naturally occurring source of stimulated spectral line emission, typically in the microwave portion of the electromagnetic spectrum. This emission may arise in molecular clouds, comets, planetary atmospheres, stellar atmospheres, or various other conditions in interstellar space.
View the full Wikipedia page for Astrophysical maser