Spinel structure in the context of "Octahedral molecular geometry"

Play Trivia Questions online!

or

Skip to study material about Spinel structure in the context of "Octahedral molecular geometry"




⭐ Core Definition: Spinel structure

The spinels are any of a class of minerals of general formulation AB
2
X
4
which crystallise in the cubic (isometric) crystal system, with the X anions (typically chalcogens, like oxygen and sulfur) arranged in a cubic close-packed lattice and the cations A and B occupying some or all of the octahedral and tetrahedral sites in the lattice. Although the charges of A and B in the prototypical spinel structure are +2 and +3, respectively (A
B
2
X
4
), other combinations incorporating divalent, trivalent, or tetravalent cations, including magnesium, zinc, iron, manganese, aluminium, chromium, titanium, and silicon, are also possible. The anion is normally oxygen; when other chalcogenides constitute the anion sublattice the structure is referred to as a thiospinel.

A and B can also be the same metal with different valences, as is the case with magnetite, Fe3O4 (as Fe
Fe
2
O
4
), which is the most abundant member of the spinel group. It is even possible for them to be alloys, as seen for example in LiNi
0.5
Mn
1.5
O
4
, a material used in some high energy density lithium ion batteries. Spinels are grouped in series by the B cation.

↓ Menu

In this Dossier

Spinel structure in the context of Hematite

Hematite (/ˈhməˌtt, ˈhɛmə-/), also spelled as haematite, is a common iron oxide compound with the formula Fe2O3 and is widely found in rocks and soils. Hematite crystals belong to the rhombohedral lattice system which is designated the alpha polymorph of Fe
2
O
3
. It has the same crystal structure as corundum (Al
2
O
3
) and ilmenite (FeTiO
3
). With this crystal structure geometry it forms a complete solid solution at temperatures above 950 °C (1,740 °F).

Hematite occurs naturally in black to steel or silver-gray, brown to reddish-brown, or red colors. It is mined as an important ore mineral of iron. It is electrically conductive. Hematite varieties include kidney ore, martite (pseudomorphs after magnetite), iron rose and specularite (specular hematite). While these forms vary, they all have a rust-red streak. Hematite is not only harder than pure iron, but also much more brittle. The term kidney ore may be broadly used to describe botryoidal, mammillary, or reniform hematite. Maghemite is a polymorph of hematite (γ-Fe
2
O
3
) with the same chemical formula, but with a spinel structure like magnetite.

↑ Return to Menu