Spin 1/2 in the context of "Spin (physics)"

Play Trivia Questions online!

or

Skip to study material about Spin 1/2 in the context of "Spin (physics)"

Ad spacer

⭐ Core Definition: Spin 1/2

In quantum mechanics, spin is an intrinsic property of all elementary particles. All known fermions, the particles that constitute ordinary matter, have a spin of 1/2. The spin number describes how many symmetrical facets a particle has in one full rotation; a spin of 1/2 means that the particle must be rotated by two full turns (through 720°) before it has the same configuration as when it started.

Particles with net spin 1/2 include the proton, neutron, electron, neutrino, and quarks. The dynamics of spin-1/2 objects cannot be accurately described using classical physics; they are among the simplest systems whose description requires quantum mechanics. As such, the study of the behavior of spin-1/2 systems forms a central part of quantum mechanics.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Spin 1/2 in the context of Fermion

In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin 3/2, etc.) and obey the Pauli exclusion principle. These particles include all quarks and leptons and all composite particles made of an odd number of these, such as all baryons and many atoms and nuclei. Fermions differ from bosons, which obey Bose–Einstein statistics.

Some fermions are elementary particles (such as electrons), and some are composite particles (such as protons). For example, according to the spin-statistics theorem in relativistic quantum field theory, particles with integer spin are bosons. In contrast, particles with half-integer spin are fermions.

↑ Return to Menu

Spin 1/2 in the context of Fermi–Dirac statistics

Fermi–Dirac statistics is a type of quantum statistics that applies to the physics of a system consisting of many non-interacting, identical particles that obey the Pauli exclusion principle. A result is the Fermi–Dirac distribution of particles over energy states. It is named after Enrico Fermi and Paul Dirac, each of whom derived the distribution independently in 1926. Fermi–Dirac statistics is a part of the field of statistical mechanics and uses the principles of quantum mechanics.

Fermi–Dirac statistics applies to identical and indistinguishable particles with half-integer spin (1/2, 3/2, etc.), called fermions, in thermodynamic equilibrium. For the case of negligible interaction between particles, the system can be described in terms of single-particle energy states. A result is the Fermi–Dirac distribution of particles over these states where no two particles can occupy the same state, which has a considerable effect on the properties of the system. Fermi–Dirac statistics is most commonly applied to electrons, a type of fermion with spin 1/2.

↑ Return to Menu