Sperm cell in the context of Cellular differentiation


Sperm cell in the context of Cellular differentiation

Sperm cell Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Sperm cell in the context of "Cellular differentiation"


⭐ Core Definition: Sperm cell

Sperm (pl.: sperm or sperms) is the male reproductive cell, or gamete, in anisogamous forms of sexual reproduction (forms in which there is a larger, female reproductive cell and a smaller, male one). Sperm cells contribute approximately half of the nuclear genetic information to the diploid offspring (excluding, in most cases, mitochondrial DNA). Animals produce motile sperm with a tail known as a flagellum, which are known as spermatozoa, while some red algae and fungi produce non-motile sperm cells, known as spermatia. Flowering plants contain non-motile sperm inside pollen, while some more basal plants like ferns and some gymnosperms have motile sperm.

Sperm cells form during the process known as spermatogenesis, which in amniotes (reptiles and mammals) takes place in the seminiferous tubules of the testicles. This process involves the production of several successive sperm cell precursors, starting with spermatogonia, which differentiate into spermatocytes. The spermatocytes then undergo meiosis, reducing their chromosome number by half, which produces spermatids. The spermatids then mature and, in animals, construct a tail, or flagellum, which gives rise to the mature, motile sperm cell. This whole process occurs constantly and takes around 3 months from start to finish.

↓ Menu
HINT:

In this Dossier

Sperm cell in the context of Embryo

An embryo (/ˈɛmbri/ EM-bree-oh) is the initial stage of development for a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sperm cell. The resulting fusion of these two cells produces a single-celled zygote that undergoes many cell divisions that produce cells known as blastomeres. The blastomeres are arranged as a solid ball that when reaching a certain size, called a morula, takes in fluid to create a cavity called a blastocoel. The structure is then termed a blastula, or a blastocyst in mammals.

The mammalian blastocyst hatches before implantating into the endometrial lining of the womb. Once implanted the embryo will continue its development through the next stages of gastrulation, neurulation, and organogenesis. Gastrulation is the formation of the three germ layers that will form all of the different parts of the body. Neurulation forms the nervous system, and organogenesis is the development of all the various tissues and organs of the body.

View the full Wikipedia page for Embryo
↑ Return to Menu

Sperm cell in the context of Bacterial flagella

A flagellum (/fləˈɛləm/; pl.: flagella) (Latin for 'whip' or 'scourge') is a hair-like appendage that protrudes from certain plant and animal sperm cells, from fungal spores (zoospores), and from a wide range of microorganisms to provide motility. Many protists with flagella are known as flagellates.

A microorganism may have from one to many flagella. A gram-negative bacterium Helicobacter pylori, for example, uses its flagella to propel itself through the stomach to reach the mucous lining where it may colonise the epithelium and potentially cause gastritis, and ulcers – a risk factor for stomach cancer. In some swarming bacteria, the flagellum can also function as a sensory organelle, being sensitive to wetness outside the cell.

View the full Wikipedia page for Bacterial flagella
↑ Return to Menu

Sperm cell in the context of Anisogamy

Anisogamy is a form of sexual reproduction that involves the union or fusion of two gametes that differ in size and/or form. The smaller gamete is male, a microgamete or sperm cell, whereas the larger gamete is female, a larger macrogamete or typically an egg cell. Anisogamy is predominant among multicellular organisms. In both plants and animals, gamete size difference is the fundamental difference between females and males.

Anisogamy most likely evolved from isogamy. Since the biological definition of male and female is based on gamete size, the evolution of anisogamy is viewed as the evolutionary origin of male and female sexes. Anisogamy is an outcome ofboth natural selection and sexual selection, and led the sexes to evolve different primary and secondary sex characteristics including sex differences in behavior.

View the full Wikipedia page for Anisogamy
↑ Return to Menu

Sperm cell in the context of Cilia

The cilium (pl.: cilia; from Latin cilium 'eyelash'; in Medieval Latin and in anatomy, cilium) is a short hair-like membrane protrusion from many types of eukaryotic cell. (Cilia are absent in bacteria and archaea.) The cilium has the shape of a slender threadlike projection that extends from the surface of the much larger cell body. Eukaryotic flagella found on sperm cells and many protozoans have a similar structure to motile cilia that enables swimming through liquids; they are longer than cilia and have a different undulating motion.

View the full Wikipedia page for Cilia
↑ Return to Menu

Sperm cell in the context of Cilium

The cilium (pl.: cilia; from Latin cilium 'eyelash'; in Medieval Latin and in anatomy, cilium) is a short hair-like membrane protrusion from many types of eukaryotic cell. (Cilia are absent in bacteria and archaea.) The cilium has the shape of a slender threadlike projection that extends from the surface of the much larger cell body. Eukaryotic flagella found on sperm cells and many protozoans have a similar structure to motile cilia that enables swimming through liquids, but they are longer than cilia and have a different undulating motion.

View the full Wikipedia page for Cilium
↑ Return to Menu

Sperm cell in the context of Preformationism

In the history of biology, preformationism (or preformism) is a formerly popular theory that organisms develop from miniature versions of themselves. Instead of assembly from parts, preformationists believed that the form of living things exist, in real terms, prior to their development. Preformationists suggested that all organisms were created at the same time, and that succeeding generations grow from homunculi, or animalcules, that have existed since the beginning of creation, which is typically defined by religious beliefs.

Epigenesis (or neoformism), then, in this context, is the denial of preformationism: the idea that, in some sense, the form of living things comes into existence. As opposed to "strict" preformationism, it is the notion that "each embryo or organism is gradually produced from an undifferentiated mass by a series of steps and stages during which new parts are added" (Magner 2002, p. 154). This word is still used in a more modern sense, to refer to those aspects of the generation of form during ontogeny that are not strictly genetic, or, in other words, epigenetic.

View the full Wikipedia page for Preformationism
↑ Return to Menu