Species distribution in the context of "Taxon"

Play Trivia Questions online!

or

Skip to study material about Species distribution in the context of "Taxon"

Ad spacer

⭐ Core Definition: Species distribution

Species distribution, or species dispersion, is the manner in which a biological taxon is spatially arranged. The geographic limits of a particular taxon's distribution is its range, often represented as shaded areas on a map. Patterns of distribution change depending on the scale at which they are viewed, from the arrangement of individuals within a small family unit, to patterns within a population, or the distribution of the entire species as a whole (range). Species distribution is not to be confused with dispersal, which is the movement of individuals away from their region of origin or from a population center of high density.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Species distribution in the context of Biogeography

Biogeography is the study of the distribution of species and ecosystems in geographic space and through geological time. Organisms and biological communities often vary in a regular fashion along geographic gradients of latitude, elevation, isolation and habitat area. Phytogeography is the branch of biogeography that studies the distribution of plants, Zoogeography is the branch that studies distribution of animals, while Mycogeography is the branch that studies distribution of fungi, such as mushrooms.

Knowledge of spatial variation in the numbers and types of organisms is as vital to us today as it was to our early human ancestors, as we adapt to heterogeneous but geographically predictable environments. Biogeography is an integrative field of inquiry that unites concepts and information from ecology, evolutionary biology, taxonomy, geology, physical geography, palaeontology, and climatology.

↑ Return to Menu

Species distribution in the context of Phytogeography

Phytogeography (from Greek φυτόν, phytón 'plant' and γεωγραφία, geographía 'geography' meaning also distribution) or botanical geography is the branch of biogeography that is concerned with the geographic distribution of plant species and their influence on the earth's surface. Phytogeography is concerned with all aspects of plant distribution, from the controls on the distribution of individual species ranges (at both large and small scales, see species distribution) to the factors that govern the composition of entire communities and floras. Geobotany, by contrast, focuses on the geographic space's influence on plants.

↑ Return to Menu

Species distribution in the context of Cosmopolitan distribution

In biogeography, a cosmopolitan distribution is the range of a taxon that extends across most or all of the surface of the Earth, in appropriate habitats; most cosmopolitan species are known to be highly adaptable to a range of climatic and environmental conditions, though this is not always so. Killer whales (orcas) are among the most well-known cosmopolitan species on the planet, as they maintain several different resident and transient populations in every major oceanic body on Earth, from the Arctic Circle to Antarctica and every coastal and open-water region in-between. Such a taxon (usually a species) is said to have a cosmopolitan distribution, or exhibit cosmopolitanism, as a species; another example, the rock dove (commonly referred to as a 'pigeon'), in addition to having been bred domestically for centuries, now occurs in most urban areas around the world.

The extreme opposite of a cosmopolitan species is an endemic (native) species, or one found only in a single geographical location. Endemism usually results in organisms with specific adaptations to one particular climate or region, and the species would likely face challenges if placed in a different environment. There are far more examples of endemic species than cosmopolitan species; one example being the snow leopard, a species found only in Central Asian mountain ranges, an environment to which the cats have adapted over millions of years.

↑ Return to Menu

Species distribution in the context of Pine

A pine is any conifer in the genus Pinus (/ˈp.nəs/) of the family Pinaceae. Pinus is the sole genus in the subfamily Pinoideae. The species are evergreen trees or shrubs with their leaves in bunches, usually of 2 to 5 needles. The seeds are carried on woody cones, with two seeds to each cone scale.

Pines are widely distributed in the Northern Hemisphere; they occupy large areas of taiga (boreal forest), but are found in many habitats, including the Mediterranean Basin, and dry tropical forests in southeast Asia and Central America. Some are fire-resistant or fire-dependent.

↑ Return to Menu

Species distribution in the context of Juniper

Junipers are coniferous trees and shrubs in the genus Juniperus (/ˈnɪpərəs/ joo-NIP-ər-əs) of the cypress family Cupressaceae. Depending on the taxonomy, between 50 and 67 species of junipers are widely distributed throughout the Northern Hemisphere as far south as tropical Africa, as far north as the Arctic, and parts of Asia and Central America. The highest-known juniper forest occurs at an altitude of 4,900 metres (16,100 ft) in southeastern Tibet and the northern Himalayas, creating one of the highest tree lines on earth.

↑ Return to Menu

Species distribution in the context of Biological dispersal

Biological dispersal refers to both the movement of individuals (animals, plants, fungi, bacteria, etc.) from their birth site to their breeding site ('natal dispersal') and the movement from one breeding site to another ('breeding dispersal'). The term also encompasses the movement of propagules such as seeds and spores. Technically, dispersal is defined as any movement that has the potential to lead to gene flow. The act of dispersal involves three phases: departure, transfer, and settlement. Each phase is associated with distinct fitness costs and benefits. By simply moving from one habitat patch to another, an individual's dispersal can influence not only its own fitness but also broader processes such as population dynamics, population genetics, and species distribution. Understanding dispersal and its consequences, both for evolutionary strategies at a species level and for processes at an ecosystem level, requires understanding on the type of dispersal, the dispersal range of a given species, and the dispersal mechanisms involved. Biological dispersal can be correlated to population density. The range of variations of a species' location determines the expansion range.

Biological dispersal may be contrasted with geodispersal, which refers to the mixing of previously isolated populations (or entire biotas) following the erosion of geographic barriers to dispersal or gene flow.

↑ Return to Menu

Species distribution in the context of Mentha

Mentha, also known as mint (from Greek μίνθα míntha, Linear B mi-ta), is a genus of flowering plants in the mint family, Lamiaceae. It is estimated that 13 to 24 species exist, but the exact distinction between species is unclear. Hybridization occurs naturally where some species' ranges overlap. Many hybrids and cultivars are known.

The genus has a subcosmopolitan distribution, growing best in wet environments and moist soils.

↑ Return to Menu

Species distribution in the context of Rabbit

Rabbits or bunnies are small mammals in the family Leporidae (which also includes the hares), which is in the order Lagomorpha (which also includes pikas). They are familiar throughout the world as a small herbivore, a prey animal, a domesticated form of livestock, and a pet, having a widespread effect on ecologies and cultures. The most widespread rabbit genera are Oryctolagus and Sylvilagus. The former, Oryctolagus, includes the European rabbit, Oryctolagus cuniculus, which is the ancestor of the hundreds of breeds of domestic rabbit and has been introduced on every continent except Antarctica. The latter, Sylvilagus, includes over 13 wild rabbit species, among them the cottontails and tapetis. Wild rabbits not included in Oryctolagus and Sylvilagus include several species of limited distribution, including the pygmy rabbit, volcano rabbit, and Sumatran striped rabbit.

Rabbits are a paraphyletic grouping, and do not constitute a clade, as hares (belonging to the genus Lepus) are nested within the Leporidae clade and are not described as rabbits. Although once considered rodents, lagomorphs diverged earlier and have a number of traits rodents lack, including two extra incisors. Similarities between rabbits and rodents were once attributed to convergent evolution, but studies in molecular biology have found a common ancestor between lagomorphs and rodents and place them in the clade Glires.

↑ Return to Menu